Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Anh
Xem chi tiết

D E F I G M

Mình hơi lười nên chỉ cho bạn và làm tắt tí nha!

a) Vì \(\Delta DEF\) cân tại D \(\Rightarrow DE=DF\); có đường trung tuyến DI \(\Rightarrow EI=FI\)

Cùng với DI chung dễ dàng chứng minh \(\Delta DEI=\Delta DFI\left(c.c.c\right)\)\

b) Vì \(EF=10cm\Rightarrow EI=5cm\). Vì DI là đường trung tuyến của \(\Delta DEF\) cân tại D

\(\Rightarrow\widehat{DEI}=90^0\). Áp dụng ĐL Pytago vào \(\Delta DEI\Rightarrow DE=13cm\)

c) Vì G là trọng tâm \(\Delta DEF\) nên \(DG=\frac{2}{3}DI\Rightarrow IG=\frac{1}{3}DI\Leftrightarrow IG=IM\)

Vì D ; G ; I ; M thẳng hàng \(\Rightarrow\widehat{EIG}=\widehat{FIM}=90^0\). Cùng với \(EI=FI\left(cmt\right)\)

\(\Rightarrow\Delta EIG=\Delta FIM\left(c.g.c\right)\Rightarrow\widehat{EGI}=\widehat{FMI}\) ( tương ứng ) 

Mà 2 góc so le trong \(\Rightarrow EM//FG\left(đpcm\right)\)

Khách vãng lai đã xóa

Mik làm câu a

a) Xét 2 tam giác: ΔDEI và Δ DFI có: DI là cạnh chung DE=DF (2 cạnh bên của Δ cân) Vì ΔDEF là Δ cân nên DI là đường trung tuyến đồng thời là đường trung trực của EF <=> EI=IF Vậy ΔDEI =ΔDFI (c. c. c)

Khách vãng lai đã xóa
Nguyễn Việt Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 19:55

a) Xét ΔDEI và ΔDFI có 

DE=DF(ΔDEF cân tại D)

DI chung

EI=FI(I là trung điểm của EF)

Do đó: ΔDEI=ΔDFI(c-c-c)

b) Ta có: I là trung điểm của EF(gt)

nên \(IE=IF=\dfrac{EF}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Ta có: ΔDEI=ΔDFI(cmt)

nên \(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)

mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)

nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)

Áp dụng định lí Pytago vào ΔDEI vuông tại I, ta được:

\(DE^2=DI^2+IE^2\)

\(\Leftrightarrow DE^2=5^2+12^2=169\)

hay DE=13(cm)

Huân Anh Nguyen
Xem chi tiết
😈tử thần😈
14 tháng 5 2021 lúc 8:28

có ΔEDF cân ở D =>DE=DF; góc E =góc F

xét ΔDEM và ΔDFM có

DM là trung tuyến => EM=FM

góc E =góc F (cmt)

DE=DF (cmt)

=>ΔDEM = ΔDFM (cgc)

b)Có Δ DEF cân mà DM là trung tuyến 

=> DM là đường cao (tc Δ cân )

=> DM⊥EF

c) EM=FM=EF/2=5

xét ΔDEM có DM ⊥ EF => góc EMD =90o

=>EM2+DM2=ED2 (đl pitago)

=>52+DM2=132 => DM=12 

d) Ta có G là trọng tâm của ΔDEF 

=>DG=2/3DM=> DG=2/3*12=8

Nguyễn Lê Phước Thịnh
14 tháng 5 2021 lúc 9:35

a) Xét ΔDEM và ΔDFM có 

DE=DF(ΔDEF cân tại D)
DM chung

EM=FM(M là trung điểm của EF)

Do đó: ΔDEM=ΔDFM(c-c-c)

Nguyễn Lê Phước Thịnh
14 tháng 5 2021 lúc 9:36

b) Ta có: DE=DF(ΔDEF cân tại D)

nên D nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ME=MF(M là trung điểm của EF)

nên M nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra DM là đường trung trực của EF

hay DM\(\perp\)EF(Đpcm)

Yến Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 21:46

d: Xét ΔDEF có

DI là trung tuyến

G là trọng tâm

=>DG=2/3DI=2/3*12=8cm

e: Xét ΔDEF có

G là trọng tâm

EM là trung tuyến

=>E,G,M thẳng hàng

binh2k5
Xem chi tiết
Chú mèo đáng yêu
Xem chi tiết
tavietduc
13 tháng 5 2019 lúc 22:36

a/ xét /\ DEF cân tại D 

=> DE = DF (t/c /\ cân )

DI là trung tuyến 

=> DI vuông với FE => DIE = 90* => DIF kề bù với DIE => DIF = 90* (1)

=> I là trung điểm EF

Xét /\ DIF và /\ DIE có :

 DIF = DIE (cmt )

DF =DE (cmt)

IF = IE ( cmt )

=> /\ DIE = /\ DIF (c.g.c)

b/  (1) => DIE = DIF = 90* 

=> 2 góc này là hai góc vuông

c/ chịu .

lmaoooooo
Xem chi tiết
HT.Phong (9A5)
21 tháng 9 2023 lúc 8:38

a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)

\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)

\(\Rightarrow DI=12\left(cm\right)\) 

b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:

\(DF^2=EF^2-DE^2\)

\(\Rightarrow DF^2=15^2-12^2=81\)

\(\Rightarrow DF=9\left(cm\right)\)

Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)

\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)

Ngô Vũ Thùy Linh
Xem chi tiết
Hoàng Trí Dũng
23 tháng 4 2020 lúc 13:15

Cho tam giác DEF cân tại D với đường trung tuyến DH. Biết rằng EF = 90cm, Độ dài đường trung tuyến DH = 24cm.

Độ dài cạnh DF laf bao nhieu

Khách vãng lai đã xóa
Hoàng Thị Thảo Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 9:37

4:

a: ΔABC cân tại A 

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

b: BH=CH=6/2=3cm

AH=căn 5^2-3^2=4cm

c: Xét ΔABC có

AH là trung tuyến

G là trọng tâm

=>A,G,H thẳng hàng

d: Xét ΔABG và ΔACG có

AB=AC

góc BAG=góc CAG

AG chung

=>ΔABG=ΔACG

=>góc ABG=góc ACQ