Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
Lê Thị Thục Hiền
10 tháng 6 2021 lúc 12:18

Bài 1.2

\(A=\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\)

C1:Bạn dùng pp chặn như bài 2.2

C2: (Gợi ý)\(\sqrt{x}+2\ge2\) và \(\sqrt{x}+2\inƯ\left(3\right)\)\(\Rightarrow\sqrt{x}+2=3\Leftrightarrow x=1\)

Vậy x=1 thì A nguyên

Bài 2.2

\(A=\dfrac{\sqrt{x}+7}{\sqrt{x}+2}=1+\dfrac{5}{\sqrt{x}+2}\)

Do \(\sqrt{x}\ge0;\forall x\)\(\Rightarrow\sqrt{x}+2\ge2\) \(\Rightarrow\dfrac{5}{\sqrt{x}+2}\le\dfrac{5}{2}\)\(\Rightarrow A\le\dfrac{7}{2}\) (1)

mà \(\dfrac{5}{\sqrt{x}+2}>0;\forall x\Rightarrow A>1\) (2)

Từ (1) (2) \(\Rightarrow1< A\le\dfrac{7}{2}\) mà A nguyên

\(\Rightarrow\left[{}\begin{matrix}A=2\\A=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}1+\dfrac{5}{\sqrt{x}+2}=2\\1+\dfrac{5}{\sqrt{x}+2}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=5\\\sqrt{x}+2=\dfrac{5}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy...

Bài 3.2

\(A=\dfrac{-x-2\sqrt{x}-5}{\sqrt{x}+2}\)\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=-\sqrt{x}-\dfrac{5}{\sqrt{x}+2}\)

\(=2-\left(\sqrt{x}+2+\dfrac{5}{\sqrt{x}+2}\right)\)

Áp dụng bđt cosi: \(\sqrt{x}+2+\dfrac{5}{\sqrt{x}+2}\ge2\sqrt{\left(\sqrt{x}+2\right).\dfrac{5}{\sqrt{x}+2}}=2\sqrt{5}\)

\(\Rightarrow A\le2-2\sqrt{5}\)

Dấu = xảy ra \(\Leftrightarrow\sqrt{x}+2=\dfrac{5}{\sqrt{x}+2}\Leftrightarrow x=9-4\sqrt{5}\)

tranthuylinh
Xem chi tiết
Yeutoanhoc
14 tháng 6 2021 lúc 14:43

`A=(2sqrtx+17)/(sqrtx+5)`

`=(2sqrtx+10+7)/(sqrtx+5)`

`=(2(sqrtx+5)+7)/(sqrtx+5)`

`=2+7/(sqrtx+5)`

`A in ZZ`

`=>7/(sqrtx+5) in ZZ`

`=>sqrtx+5 in Ư(7)={+-1,+-7}`

Mà `sqrtx+5>=5`

`=>sqrtx+5=7`

`=>sqrtx=2`

`=>x=4`

Vậy `x=4` thì `A in ZZ`

Yeutoanhoc
14 tháng 6 2021 lúc 14:51

Hì nhìn lộn đề bài =="

`A=(2\sqrtx+17)/(sqrtx+5)`

`A=(2sqrtx+10+7)/(sqrtx+5)`

`=(2(sqrtx+5)+7)/(sqrtx+5)`

`=2+7/(sqrtx+5)>2`

`A=2+7/(sqrtx+5)<=2+7/5=17/5`

`=>2<A<=17/5`

Mà `A in ZZ`

`=>A=3`

`=>2sqrtx+17=3sqrtx+15`

`=>sqrtx=2`

`=>x=4`

tranthuylinh
Xem chi tiết
missing you =
10 tháng 6 2021 lúc 12:17

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

tranthuylinh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
20 tháng 6 2021 lúc 12:19

A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)

Mà \(4\sqrt{x}+9>0\)

\(2\sqrt{x}+1>0\)

=> A > 0

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 0 < A \(\le9\)

Mà A thuộc Z

<=> A \(\in\){1;2;3;4;5;6;7;8;9}

Đến đây bn thay A vào để tìm x nhé

๖ۣۜDũ๖ۣۜN๖ۣۜG
20 tháng 6 2021 lúc 14:34

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)

<=> A > 2

Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 2 < A \(\le9\)

Mà A thuộc Z

<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)

Đến đây bn thay A vào để tìm x nhé

tranthuylinh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 11:02

A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)

Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2

Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)

<=> 2 < A \(\le4\)

Mà A nguyên

<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)

TH1: A = 3

<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)

<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)

TH2: A = 4

<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)

tranthuylinh
Xem chi tiết
Yeutoanhoc
29 tháng 6 2021 lúc 9:27

Đề sai rồi vì `P>0AAx>=0,x ne 1/2` mà phải tìm để `P<=0` nên nhất thiết mẫu là `2sqrtx-1` mặt khác còn lý do nữa là `x ne 1/2` mà không phải là `1/4` nên mình vẫn băn khoăn nhưng lý do đầu có vẻ thuyết phục hơn và sửa lại là `x ne 1/4` nhé!

`|P|>=P`

Mà `|P|>=0`

`=>P<=0`

`<=>(sqrtx+2)/(2sqrtx-1)<=0`

Mà `sqrtx+2>=2>0AAx>=0`

`<=>2sqrtx-1<0`

`<=>2sqrtx<1`

`<=>sqrtx<1/2`

`<=>x<1/4`

Vậy với `0<=x<1/4` thì `|P|>=P.`

tranthuylinh
Xem chi tiết
Bảo Anh
Xem chi tiết
Trên con đường thành côn...
20 tháng 7 2023 lúc 8:46

Ta có:

\(\dfrac{1}{cos^2x-sin^2x}+\dfrac{2tanx}{1-tan^2x}=\dfrac{1}{cos2x}+tan2x=\dfrac{1}{cos2x}+\dfrac{sin2x}{cos2x}=\dfrac{1+sin2x}{cos2x}=\dfrac{cos2x}{1-sin2x}\)

\(\Rightarrow P=a+b=2+1=3\)