Biết ab = 1. Tìm GTLN của \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
Cho các số thực a, b, c thỏa mãn a+b+c=3. Tìm GTLN của biểu thức:\(P=3\left(ab+bc+ca\right)+\frac{1}{2}\left(a-b\right)^2+\frac{1}{4}\left(b-c\right)^2+\frac{1}{8}\left(c-a\right)^2\)
Cho các số dương a , b , c \(\ne0\) . TM: a +b + c =abc . Tìm GTLN của bt \(\frac{a}{\sqrt{bc\left(1+A^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)
Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Cach khac
Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Ta co:
\(a+b+c=abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(\Rightarrow xy+yz+zx=1\)
\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)
Ta lai co:
\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)
Tuong tu:
\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)
\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
\(\Rightarrow a=b=c=\sqrt{3}\)
Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)
Cho a,b,c >0 và a+b+c=1. Tìm GTLN của
P=\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\)
chuyển mỗi biểu thức trong cân về cùng bậc 2 ta có:
\(a+\frac{\left(b-c\right)^2}{4}=a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{4}=a^2+a\left(b+c\right)+\frac{\left(b+c\right)^2-4ab}{4}\)
\(=\left(a+\frac{b+c}{2}\right)^2-bc\le\left(a+\frac{b+c}{2}\right)^2\)
\(\Rightarrow\sqrt{a+\frac{\left(b-c\right)^2}{2}}\le a+\frac{b+c}{2}\)
tương tự ta có: \(\hept{\begin{cases}\sqrt{b+\frac{\left(c-a\right)^2}{4}}\le b+\frac{c+a}{2}\\\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le c+\frac{a+b}{2}\end{cases}}\)
cộng theo vế của bđt trên ta được
\(P=\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\left(a+b+c\right)=2\)
Vậy GTLN của P=2 đạt được khi a=b=0;c=1 và các hoán vị
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)
=> \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)
=> \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)
Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)
Có: \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)
<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(x^2+y^2+z^2\ge xy+yz+zx\)
Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)
Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)
Với các số thực dương a,b thay đổi , hãy tìm GTLN của \(S=\left(a+b\right)\left(\frac{1}{\sqrt{a^2-ab+2b^2}}+\frac{1}{\sqrt{b^2-ab+2b^2}}\right)\)
Đánh sai đề kìa :v \(\frac{1}{\sqrt{b^2-ab+2a^2}}\) mới đúng.
Cho \(a=b\rightarrow S=2\sqrt{2}\). Ta cm đây là gtln của S.
\(S\le\left(a+b\right)\sqrt{2\left(\frac{1}{a^2-ab+2b^2}+\frac{1}{b^2-ab+2a^2}\right)}\le2\sqrt{2}\)
\(\Leftrightarrow\left(5a^2-6ab+5b^2\right)\left(a-b\right)^2\ge0\)(bình phương lên quy đồng là xong)
Đẳng thức xảy ra khi a = b.
Đúng ko đấy ạ, sao em quy đồng lên ra \(20a^2b^2-16\left(a^3b+ab^3\right)+5\left(a^4+b^4\right)\)
Nhưng \(\left(a-b\right)^2\left(5a^2-6ab+5b^2\right)=5\left(a^4+b^4\right)+22a^2b^2-16\left(a^3b+ab^3\right)\)
Anh đã kiểm tra lại bằng Maple. Đúng em nhé, em thử quy đồng lại hoặc vào thống kê hỏi đáp xem ảnh.
cho \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2017\).
Tìm GTLN của \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Áp dụng Bunhia cho bộ số (1;1;1) vfa (a;b;c) ta có 3(a2+b2+c2) >= (a+b+c)2
=> 3(2a2+b2) >=(2a+b2); 3(2b2+c2) >= (2b+c)2; 3(2c2+a2) >= (2c+a)2
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
Ta có \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x+y+z}\)
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+b}\le\frac{1}{9}\left[\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)
=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(I\right)\)
Ta có \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
\(=3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\left(II\right)\)
Áp dụng Bunhia cho bộ số (1;1;1) và \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)\(\Rightarrow\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
=> \(10\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left(III\right)\)
Từ (I)(II)(III) => \(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2015\ge10\cdot\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\cdot2015\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{3\cdot2015}\left(IV\right)\)
Từ (I)(IV) => \(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}\cdot\sqrt{3\cdot2015}=\sqrt{\frac{2015}{3}}\)
Vậy GTNN của P=\(\sqrt{\frac{2015}{3}}\)khi a=b=c và \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
=> \(a=b=c=\sqrt{\frac{3}{2015}}\)
Identitya,b,c đã dương???
tìm GTLN của P=\(\left(1-\frac{b}{a}\right)\left(1-\frac{c}{b}\right)\left(1-\frac{a}{c}\right)\) biết a,b,c thuộc [1/2;1]
Cho 3 số thực dương a;b;c thỏa mãn \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
Tìm GTLN của \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho 2 số dương a, b thỏa mãn: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\). Tìm GTLN của biểu thức:
\(Q=\frac{1}{a^4+b^2+2ab^2}+\frac{1}{b^4+a^2+2ba^2}\)
\(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)
=> \(2ab=a+b\)
Mà \(2ab\le\frac{\left(a+b\right)^2}{2}\)
=> \(a+b\ge2\)
Ta có
\(a^4+b^2\ge2a^2b\)
\(b^4+a^2\ge2ab^2\)
Khi đó \(Q\le\frac{1}{2ab\left(a+b\right)}+\frac{1}{2ab\left(a+b\right)}=\frac{2}{\left(a+b\right)^2}\le\frac{2}{2^2}=\frac{1}{2}\)
Vậy \(MaxQ=\frac{1}{2}\)khi a=b=1