Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Sơn
Xem chi tiết
Kẻ Bí Mật
21 tháng 5 2017 lúc 18:26

\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}\)

=\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)

=\(\frac{1}{2}\left(1-\frac{1}{2015}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2016}\right)\)

=\(\frac{3}{4}-\left(\frac{1}{4030}+\frac{1}{4032}\right)\) < \(\frac{3}{4}\)

=> đpcm

Nguyễn Lê Nhật Tiên
Xem chi tiết
Sooya
10 tháng 4 2018 lúc 18:22

\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)

\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)

\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)

\(=\frac{2014\cdot2}{1\cdot2015}\)

\(=\frac{4028}{2015}\)

jin rin
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 3 2023 lúc 18:52

a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)

b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)

Ma Kết Đẹp Trai
Xem chi tiết
Trịnh Thành Công
21 tháng 5 2017 lúc 21:19

Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)

  \(\Leftrightarrow A=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)

 \(\Leftrightarrow A=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)

\(\Leftrightarrow A=\left(1-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{2016}\right)\)

 \(\Leftrightarrow A=\frac{2014}{2015}+\frac{1007}{2016}\)

   \(\Leftrightarrow A=1,5\)

          Đổi \(\frac{3}{4}=0,75\)

                Vì 0,75 < 1,5

Nên ko thể CM  

Nguyễn Thị Thùy Dương
21 tháng 5 2017 lúc 21:23

Bài này mà cũng hỏi thì đừng có thi nữa. đợi vài ngày sau có đáp án nhé.

Nguyễn Hải Dương
22 tháng 5 2017 lúc 8:16

CTV mà làm sai hoàn toàn thế này ak

Tống Quang HUY
Xem chi tiết
Lê Song Phương
18 tháng 3 2023 lúc 20:44

\(P=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2021.2023}\)

Ta sẽ "tách" P làm 2 phần:

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

Do đó \(P=A+B\)

Ta có \(A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)\) 

\(A=\dfrac{1011}{2023}\)

Mặt khác, \(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+\dfrac{8-6}{6.8}+...+\dfrac{2022-2020}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{505}{2022}\)

Từ đó \(P=A+B=\dfrac{1011}{2023}+\dfrac{505}{2022}=\dfrac{3065857}{4090506}\)

 

VŨ THUẤT
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 10 2023 lúc 7:41

\(C=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.\dfrac{25}{4.6}....\dfrac{9801}{9800}=\)

\(=\dfrac{2^2.3^2.4^2.5^2.....99^2}{1.2.3^2.4^2.5^2....98^2.99.100}=\dfrac{2.99}{100}=\dfrac{198}{100}=1,98\)

Ngọc Ánh
Xem chi tiết
tạ thanh
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 8 2015 lúc 7:52

=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100

=1-1/2-1/99-1/98=2327/4851

Như Quỳnh Nguyễn
Xem chi tiết
Minh Hiếu
24 tháng 1 2022 lúc 19:27

Đề sai nha em

Nếu để như này thì phải quy đồng hết