2x-1+5.2x-2=\(\frac{7}{32}\)
Tìm x,y,z,biết:
1)2x=3y=4z và 2x-5z=-6
2)\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}\) và 3x+5y-7z=32
Đề bài
Giải mỗi bất phương trình sau:
a) \({3^x} > \frac{1}{{243}}\)
b) \({\left( {\frac{2}{3}} \right)^{3x - 7}} \le \frac{3}{2}\)
c) \({4^{x + 3}} \ge {32^x}\)
d) \(\log (x - 1) < 0\)
e) \({\log _{\frac{1}{5}}}(2x - 1) \ge {\log _{\frac{1}{5}}}(x + 3)\)
f) \(\ln (x + 3) \ge \ln (2x - 8)\)
\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)
d, Điều kiện: x > 1
\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)
e, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)
f, Điều kiện: x > 4
\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)
Tìm x:
1.x^3-3x^2=0
2.3x^3-48x=0
3.5x(x-1)=x-1
4.2(x+5)-x^2-5x=0
5.2x(x-5)-x(3+2x)=26
\(1,x^3-3x^2=0\)
\(x^2\left(x-3\right)=0\)
\(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=3\left(TM\right)\end{cases}}}\)
\(2,3x^3-48x=0\)
\(3x\left(x^2-16\right)=0\)
\(\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x^2=16\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=\pm4\left(TM\right)\end{cases}}}}\)
\(3,5x\left(x-1\right)=x-1\)
\(5x^2-5x=x-1\)
\(5x^2-6x+1=0\)
\(5x^2-5x-x+1=0\)
\(5x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(5x-1\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}\orbr{\begin{cases}x=\frac{1}{5}\left(TM\right)\\x=1\left(TM\right)\end{cases}}}\)
\(4,2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\)
\(-x^2-3x+10=0\)
\(-x^2-5x+2x+10=0\)
\(-x\left(x+5\right)+2\left(x+5\right)=0\)
\(\left(x+5\right)\left(2-x\right)=0\)
\(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\orbr{\begin{cases}x=-5\left(TM\right)\\x=2\left(TM\right)\end{cases}}}\)
\(5,2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x-26=0\)
\(-13\left(x+2\right)=0\)
\(x=-2\left(TM\right)\)
Trả lời:
1, \(x^3-3x^2=0\)
\(\Leftrightarrow x^2\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy x = 0; x = 3 là nghiệm của pt.
2, \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)
Vậy x = 0; x = 4; x = - 4 là nghiệm của pt.
3, \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = 1; x = 1/5 là nghiệm của pt.
4, \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
Vậy x = - 5; x = 2 là nghiệm của pt.
5, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Vậy x = - 2 là nghiệm của pt.
Tìm x
\(1,\left(x-1\right)^{x+3}=2^5:32\)
\(2,|8x-3|=|2x+1|\)
\(3,|2x+5|=|2-3x|\)
\(4,|x-1|=2x+1\)
\(\frac{5}{4}:\frac{x}{3}=\frac{1}{7}-\frac{-3}{7}\)
tìm X
1)\(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)
2)\(|2x-1|+1=4\)
3)\(\left(3x-7\right)^2=36\)
4)\(2^2.8^{x-1}=32\)
5) 7(x-2) + 2x(2-x)=0
1) \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)
\(\Leftrightarrow-\frac{\frac{2x}{3}-3}{10}=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{\frac{2x}{3}}{10}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{2x}{3\times10}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{2x}{30}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\frac{x}{15}+\frac{3}{10}=\frac{2}{5}\)
\(\Leftrightarrow\frac{3}{10}-\frac{x}{15}=\frac{2}{5}\)
\(\Leftrightarrow-\frac{x}{15}=\frac{2}{5}-\frac{3}{10}\)
\(\Leftrightarrow-\frac{x}{15}=\frac{1}{10}\)
\(\Leftrightarrow-x=\frac{15}{10}\)
\(\Leftrightarrow-x=\frac{3}{2}\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}\)
2) \(\left|2x-1\right|+1=4\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{2;-1\right\}\)
2. |2x-1|+1=4
|2x+1| = 4-1
|2x+1| = 3
TH1: 2x+1 = -3
2x = -3-1
2x= -4
x= -4:2
x= -2
TH2; 2x+1=3
2x= 3-1
2x=2
x= 2:2
x= 1
Vậy...
tìm x, biết
1. \(\frac{x+1}{x-2}=\frac{3}{4}\)
2. \(\frac{52}{2x-1}=\frac{13}{30}\)
3.\(\frac{2x-3}{x+1}=\frac{4}{7}\)
4. \(\frac{2x+3}{42}=\frac{3x-1}{32}\)
1.\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Leftrightarrow\left(x+1\right).4=\left(x-2\right).3\)
\(\Leftrightarrow4x+4=3x-6\)
<=>4x-3x=-6-4
<=>x=-10
2.\(\frac{52}{2x-1}=\frac{13}{30}\)
<=>52.30=(2x-1).13
<=>1560=26x-13
<=>-26x=-13-1560
<=>-26x=-1573
<=>x=60,5
3.\(\frac{2x-3}{x+1}=\frac{4}{7}\)
<=>(2x-3).7=(x+1).4
<=>14x-21=4x+4
<=>14x-4x=4+21
<=>10x=25
<=>x=2,5
4.\(\frac{2x+3}{42}=\frac{3x-1}{32}\)
<=>(2x+3).32=42(3x-1)
<=>64x+96=126x-42
<=>64x-126x=-42-96
<=>-62x=-138
<=>x=69/31
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
Bài 1 rút gọn
\(\frac{\left(-7\right)^{32}.28^{43}}{\left(-8\right)^{29}.343^{25}}\)
Bài 2 tìm giá trị nhỏ nhất của biểu thức
\(2|2x-\frac{5}{7}|-1\)
4. (x-250):6=43- 22x3
5.2x+3x+5x=1030
6.15x-35x+50x=120
7.1/2x+1/6x+1/3x=2023
8. 165-(35:x+3)x19= 13
cứu mình với,mình cần gấp
4. ( x - 250 ) : 6 = 64 - 12
( x- 250 ) : 6 = 52
x - 250 = 312
x = 562
5. 10x = 1030
=> x = 103
6. 30x = 120
x = 4
7. \(x=2023\)
\(8.165-\left(35:x+3\right).19=13\)
\(\left(35:x+3\right).19=152\)
\(35:x+3=8\)
\(35:x=5\)
\(x=7\)
4) \(\left(x-250\right)\div6=4^3-2^2\times3\)
\(\left(x-250\right)\div6=64-4\times3\)
\(\left(x-250\right)\div6=64-12=52\)
\(x-250=52\times6=312\)
\(x=312+250\)
\(x=562\)
5) \(2x+3x+5x=1030\)
\(x\left(2+3+5\right)=1030\)
\(10x=1030\)
\(x=1030\div10\)
\(x=103\)
6) \(15x-35x+50x=120\)
\(x\left(15-35+50\right)=120\)
\(30x=120\)
\(x=120\div30\)
\(x=4\)
7) \(\dfrac{1}{2}x+\dfrac{1}{6}x+\dfrac{1}{3}x=2023\)
\(x\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)=2023\)
\(x\times1=2023\)
\(x=2023\)
8) \(165-\left(35\div x+3\right)\times19=13\)
\(\left(35\div x+3\right)\times19=165-13\)
\(\left(35\div x+3\right)\times19=152\)
\(35\div x+3=152\div19=8\)
\(35\div x=8-3=5\)
\(x=35\div5\)
\(x=7\)
Tìm x biết
(2,8x - 32) : \(\frac{2}{3}\)= -90
(4,5 - 2x) . \(1\frac{4}{7}\)= \(\frac{11}{14}\)
A/\(\left(2,8x-32\right):\frac{2}{3}=-90\)
\(\left(\frac{28}{10}x-32\right)=\frac{-90}{1}.\frac{2}{3}\)
\(\left(\frac{14}{5}x-32\right)=\frac{-30}{1}.\frac{2}{1}\)
\(\left(\frac{14}{5}x-32\right)=-60\)
\(\frac{14}{5}x=-60+32\)
\(\frac{14}{5}x=-28\)
\(x=\frac{-28}{1}:\frac{14}{5}\)
\(x=\frac{-28}{1}.\frac{5}{14}\)
\(x=\frac{-2}{1}.\frac{5}{1}=-10\)
B/\(\left(4,5-2x\right).1\frac{4}{7}=\frac{11}{14}\)
\(\left(\frac{45}{10}-2x\right).\frac{11}{7}=\frac{11}{14}\)
\(\left(\frac{9}{2}-2x\right)=\frac{11}{14}:\frac{11}{7}\)
\(\left(\frac{9}{2}-2x\right)=\frac{11}{14}.\frac{7}{11}\)
\(\left(\frac{9}{2}-2x\right)=\frac{1}{2}.\frac{1}{1}=\frac{1}{2}\)
\(2x=\frac{9}{2}-\frac{1}{2}\)
\(2x=\frac{8}{2}\)
\(x=\frac{8}{2}:\frac{2}{1}=\frac{8}{2}.\frac{1}{2}\)
\(x=\frac{4}{2}.\frac{1}{1}=\frac{4}{2}=2\)