Tìm x,y là số tự nhiên khác 0
\(\frac{x+y}{xy}=2\)
cho số nguyên tố p .Giả sử x,y là số tự nhiên khác 0 thõa mãn \(\frac{x^2+py^2}{xy}\) là số tự nhiên .Chứng minh \(\frac{x^2+py^2}{xy}=1+p\)
1.Tìm ba số tự nhiên a,b,c nhỏ nhất khác 0 sao cho 64a=80b=96c
2.Tìm hai số tự nhiên x,y biết
x+y=19(x,y là số nguyên tố)
xy+3x+y=4
1.64a=80b=96c=>\(\frac{64a}{960}=\frac{80b}{960}=\frac{96c}{960}\)
=>\(\frac{a}{15}=\frac{b}{12}=\frac{c}{10}\)
......ko biết
2.Có:xy+3x+y=4
=>x(y+3)+y=4
=>x(y+3)+(y+3)=4+3=7
=>(x+1)(y+3)=7=>x+1 và y+3 thuộc Ư(7)
x+1 | -1 | -7 | 1 | 7 |
y+3 | -7 | -1 | 7 | 1 |
x | -2 | -8 | 0 | 6 |
y | -10 | -4 | 4 | -2 |
Với các cặp số(x;y) trên ko có số nào thỏa mãn x+y=19
Ta có: 64=2.2.2.2.2.2
80=2.2.2.2.5
96=2.2.2.2.2.3
=>BCLN(64,80,96)=2.2.2.2.2.2.3.5=960
Vì a,b,c nhỏ nhất nên 64a=80b=96c
=>a=960:64=15
b=960:80=12
c=960:96=10
Vậy a=15 ; b=12 ; c=10
Thay BCLN thành BCNN
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
tìm tất cả các số tự nhiên x y (x y khác 0) thỏa mãn
2.x+4/y - 2/x -5/xy = 1
Cho x, y là hai số tự nhiên khác 0, thoả mãn x+y=12. Tìm GTLN của S=xy
Áp dụng bất đẳng thức Cosi ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow2\sqrt{S}\le12\Leftrightarrow\sqrt{S}\le6\Rightarrow S\le36\)
Dấu = xảy ra khi x=y=6
Tìm các số tự nhiên x,y khác 0 biết 1- 1/x - 1/y - 2/xy = 0 giúp mik nhanh với !
=> 1 = 1/x + 1/y + 2/xy
=> xy/xy = y/xy + x/xy + 2/xy
=> xy/xy = (y+x+2)/xy
=> xy = y+x+2
=> xy - x - y = 2
=> xy - x - y + 1 = 3
=> (x-1)(y-1) = 3
Do x,y ∈ N* nên x-1, y-1 ∈ N
=> (x-1, y-1) = (1,3); (3,1)
=> (x,y)= (2,4); (4,2) (thử lại thỏa mãn)
Vậy (x,y)= (2,4); (4,2)
Tìm MAX và MIN của xy biết rằng x,y là các số tự nhiên khác 0 và x+y=201+
Cho x và y là hai số tự nhiên khác 0 mà x+y=2017.Tìm giá trị lớn nhất của tích xy
Áp dụng bất đẳng thức Cosi cho 2 số dương ta có \(x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\)
\(\Rightarrow xy\le\frac{2017^2}{4}=\frac{4068289}{4}\) Dấu bằng xảy ra khi và chỉ khi \(x=y=\frac{2017}{2}=1008,5\)
Vậy giá trị lớn nhất của tích xy là \(\frac{4068289}{4}\)\(\Leftrightarrow x=y=1008,5\)
NHỚ K MÌNH NHA
Nhầm rồi b. x,y là tự nhiên khác 0 mà.
Áp dụng bất đẳng thức Cosi cho 2 số dương ta có x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}x+y≥2xy⇒xy≤4(x+y)2
\Rightarrow xy\le\frac{2017^2}{4}=\frac{4068289}{4}⇒xy≤420172=44068289 Dấu bằng xảy ra khi và chỉ khi x=y=\frac{2017}{2}=1008,5x=y=22017=1008,5
Vậy giá trị lớn nhất của tích xy là \frac{4068289}{4}44068289\Leftrightarrow x=y=1008,5⇔x=y=1008,5
NHỚ K MÌNH NHA
cho số nguyên tố p .Giả sử x,y là số tự nhiên khác 0 thõa mãn \(\frac{x^2+py^2}{xy}\) là số tự nhiên .Chứng minh \(\frac{x^2+py^2}{xy}=1+p\)
Gọi \(d=gcd\left(x;y\right)\Rightarrow x=md;y=nd\) với \(\left(m;n\right)=1;m,n\inℕ^∗\)
Ta có:\(A=\frac{x^2+py^2}{xy}=\frac{m^2d^2+pn^2d^2}{mnd^2}=\frac{m^2+pn^2}{mn}\)
\(\Rightarrow m^2+pn^2⋮mn\)
\(\Rightarrow\hept{\begin{cases}m^2+pn^2⋮m\\m^2+pn^2⋮n\end{cases}}\Rightarrow m^2⋮n\)
Mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m^2+p⋮m\Rightarrow p⋮m\)
Mà p là số nguyên tố nên \(m=1\left(h\right)m=p\)
Với \(m=1\Rightarrow x=y=d\Rightarrow\frac{x^2+py^2}{xy}=1+p\)
Với \(m=p\Rightarrow x=dp;y=d\Rightarrow\frac{x^2+py^2}{xy}=p+1\)
Vậy ta có đpcm