Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Huỳnh Thúy Nga
Xem chi tiết
Đỗ Trung Hiếu
Xem chi tiết
Hoàng Phúc
9 tháng 5 2016 lúc 20:40

Tổng quát: \(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right).a}-\frac{1}{a\left(a+1\right)}\)

Ta có: \(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+.....+\frac{2}{2013.2014.2015}\)

\(S=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+.....+\left(\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)

\(S=\frac{1}{1.2}-\frac{1}{2014.2015}=\frac{1}{2}-\frac{1}{2014.2015}<\frac{1}{2}\)

Vậy....................

Louis Pasteur
6 tháng 5 2016 lúc 18:39

S=(2/1.2-2/2.3)+(2/2.3-2/3.4)+(2/3.4-2/4.5)+...........+(2/2013.2014-2/2014-2/2015)

S=(2/1.2-2/2014.2015):2

S=1-2/2014.2/2015

--> S>1/2

Đỗ Trung Hiếu
9 tháng 5 2016 lúc 20:09

giải thích hộ chả hiểu

Trần Ngô Thảo Vi
Xem chi tiết
Phoebe
Xem chi tiết
Nguyễn Thanh Hằng
29 tháng 4 2017 lúc 16:37

Ta có :

\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...............+\dfrac{2}{2009.2010.2011}\)

\(S=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.........+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)

\(S=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)

\(S=\dfrac{1}{2}-\dfrac{1}{4042110}\) \(< \dfrac{1}{2}\)

\(\Rightarrow S< Q\)

Thủ lĩnh thẻ bài Sakura
Xem chi tiết
Nguyễn Huy Tú
2 tháng 5 2017 lúc 11:00

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2009.2010.2011}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2009.2010}-\frac{1}{2010.2011}\)

\(=\frac{1}{2}-\frac{1}{2010.2011}< \frac{1}{2}\)

Vậy...

6a01dd_nguyenphuonghoa.
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 7 2023 lúc 9:27

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

Nguyễn Nhật Quân
Xem chi tiết
Muôn cảm xúc
3 tháng 5 2016 lúc 19:37

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{49.50.51}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{50.51}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2550}\right)=\frac{637}{2550}\)

Ngô Nhất Khánh
3 tháng 5 2016 lúc 20:03

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)

ta có dạng tổng quát

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)-\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) bạn quy đồng ra rồi tính nha

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{49.50}-\frac{1}{50.51}\)

\(2A=\frac{1}{1.2}-\frac{1}{50.51}\)

\(2A=\frac{637}{1275}\)

\(A=\frac{637}{2550}\)

Cao Hoàng Minh Nguyệt
3 tháng 5 2016 lúc 20:03

= 1/2 (1/1.2 - 1/50.51)

=......

Ngọc Ánh Trương
Xem chi tiết
Nguyệt
12 tháng 10 2018 lúc 12:16

đặt S=1.2.3+2.3.4+....+47.48.49

4S=1.2.3.(4-0)+2.3.4.(5-1)+...+47.48.49.(50-46)

4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+....+47.48.49.50-46.47.48.49

4S=47.48.49.50-1.2.3

S=(47.48.49.50-1.2.3):4

Edogawa Conan_ Kudo Shin...
12 tháng 10 2018 lúc 12:31

cool queen đúng rồi

Thấu Minh Phong
12 tháng 10 2018 lúc 12:34

???????????

Danh Ha Anh
Xem chi tiết
believe in yourself
2 tháng 8 2017 lúc 20:30

S=1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +...+ 1/2010.2011 - 1/2011.2012

S=1/1.2 - 1/2011.2012<1/2

=>S<P

hoang thanh mai
2 tháng 8 2017 lúc 19:58

75:x=3(du 3 )

Trần Đặng Phan Vũ
23 tháng 4 2018 lúc 21:30

\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+........+\frac{2}{2010.2011.2012}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+......+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)

\(=\frac{1}{1.2}-\frac{1}{2011.2012}\)

\(=\frac{1}{2}-\frac{1}{2011.2012}\)

mà \(\frac{1}{2}-\frac{1}{2011.2012}< \frac{1}{2}\)

\(\Rightarrow S< P\)