\(\dfrac{2x-5}{3}=\dfrac{x+2}{2}\) help em vs mn ơi
\(\dfrac{3}{5}x^3y\left(10xy^3-\dfrac{5}{3}y^2+\dfrac{5}{6}xy\right)\) help em vs mn ơi
\(=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\)
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\) help em vs mn ơi
ĐK: ` x\ne \pm 3`
`(x+1)/(x-3)+(x-1)/(x+3)=(x+6)/(x^2-9)`
`<=>(x+1)(x+3)+(x-1)(x-3)=x+6`
`<=>x^2+4x+3+x^2-4x+3=x+6`
`<=>2x^2+6=x+6`
`<=>2x^2-x=0`
`<=>x(2x-1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy `S={0; 1/2}`.
ĐKXĐ: x ≠ -3, x ≠ 3
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+3\right)+\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow x^2+4x+3+x^2-4x+3=x+6\)
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{1}{2}\left(tm\right)\end{matrix}\right.\)
Vậy...
\(\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{x^2-9}\)(a)
ĐKXĐ\(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
(a)\(\Leftrightarrow\dfrac{x+1}{x-3}+\dfrac{x-1}{x+3}=\dfrac{x+6}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\left(x+1\right).\left(x+3\right)+\left(x-1\right).\left(x-3\right)=x+6\)
\(\Leftrightarrow x^2+3x+x+3+x^2-3x-x+3=x+6\)
\(\Leftrightarrow x^2+3x+x+x^2-3x-x-x=6-3-3\)
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(thỏa-mãn-ĐKXĐ\right)\\x=\dfrac{1}{2}\left(thỏa-mãn-ĐKXĐ\right)\end{matrix}\right.\)
Vậy S = \(\left\{0;\dfrac{1}{2}\right\}\)
\(\dfrac{3x+2}{3}\le\dfrac{x-4}{7}\) help em vs mn ơi
`(3x+2)/3 <= (x-4)/7`
`<=>7(3x+2) <= 3(x-4)`
`<=> 21x+14<=3x-12`
`<=>18x <= -26`
`<=> x <=-13/9`
\(\dfrac{3-3x}{5}\)=\(\dfrac{x-1}{2}\) help em vs mn
\(\dfrac{x}{x+4}+\dfrac{56-x^2}{x^2}=\dfrac{5}{x-4}\) help em vs mn oi
\(\dfrac{3x+2}{3}\le\dfrac{x-4}{7}\) help em với mn ơi
`(3x+2)/3 <= (x-4)/7`
`<=>7(3x+2) <= 3(x-4)`
`<=>21x+14 <= 3x-12`
`<=> 18x <=-26`
`<=>x <= -13/9`
Vậy `x<=-13/9`.
\(\left\{{}\begin{matrix}\dfrac{2}{X+Y}-\dfrac{3Y}{2X-Y}=1\\\dfrac{X}{2X+Y}+\dfrac{Y}{2X-Y}=3\end{matrix}\right.\)
GIÚP EM VỚI MN ƠI
Mik thấy ở vế đầu tiên nó hình như bạn bị nhầm thì phải :\(\dfrac{2X}{2X+Y}-\dfrac{3Y}{2X-Y}=1\)
\(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)
MN help mình với
Ta có:2x+6=2(x+3);x2+3x=x(x+3)
➞MTC:2x(x+3)
Ta co:(x+1/2x+6)+(2x+3/x2+3x)={[(x+1)x]+[(2x+3)2]}/2x(x+3)=x2+5x+6/2x(x+3)=(x+2)(x+3)/2x(x+3)=x+2/2x
cho x,y thỏa mãn \(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)
Chứng tỏ:\(\dfrac{1}{x}+\dfrac{1}{y}=24\)
Help Mn ơi lm giúp mk vs chiều nộp rồi
Ta có: \(\left(\dfrac{1}{3}-2x\right)^{2018}\ge0\forall x\);
\(\left(3y-x\right)^{2020}\ge0\forall x;y\)
=> \(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\)
mà theo đề thì:\(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)
=> Dấu ''='' xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\)
Ta có: \(\dfrac{1}{3}-2x=0\Rightarrow x=\dfrac{1}{6}\);
\(3y-x=0\Leftrightarrow3y-\dfrac{1}{6}=0\Leftrightarrow3y=\dfrac{1}{6}\Leftrightarrow y=\dfrac{1}{18}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{1}{6}}+\dfrac{1}{\dfrac{1}{18}}=6+18=24\left(đpcm\right)\)