cho E=1/1.101+1/2.102+1/3.103+...+1/10.110
và F=1/1.11+1/2.12+1/3.13+...+1/100.110
tính E:F
Cho E=1/1.101+1/2.102+1/3.103+...+1/10.110 và F=1/1.11+1/2.12+1/3.13+...+1/100.110
Tìm tỉ số E/F
Cho E= 1/1.101+1/2.102+1/3.103+...+1/10.110 F= 1/1.11+1/2.12+1/3.13+...+1/100.110
Tính tỉ số E/F.
Giúp mình nha
( 1/1.101 + 1/2.102 + 1/3.103 +...+ 1/10.100 ).x = 1/1.11 + 1/2.12 + 1/3.13 + ...+ 1/100.110
(100/1.101 + 100/2.102 + 100/3.103 +....+100/10.110) . x
= (10/1.11 + 10/2.12 + 10/100.110 )10
=>(1+1/2+1/3+...+1/10-1/101-...-1/110)x
=(1+1/2+1/3+...+1/10+1/11+...+1/100-1/11-...-1/100-1/101-...-1/110)10 =>(1+1/2+1/3+...+1/10-1/101-...-1/110)x
=(1+1/2+1/3+...+1/10-1/101-...-1/110)10 =>x=10
tìm x biết:
(1/1.101 + 1/2.102 + 1/3.103+....+1/10.110) .x = 1/1.11 + 1/2.12 + 1/3.13 +....+1/100.110
⇒(1−1101 +12 −1102 +13 −1103 +...+110 −1110 ).x=10.(1−111 +12 −112 +...+1100 −1110 )
⇒((1+12 +13 +...+110 )−(1101 +1102 +...+1110 )).x=10.((1+12 +..+110 +111 +112 +...+1100 )−(111 +112 +...+1110 ))
(\(\dfrac{1}{1.101}+\dfrac{1}{2.102}+\dfrac{1}{3.103}+...+\dfrac{1}{10.110}\)).x= \(\dfrac{1}{1.11}+\dfrac{1}{2.12}+\)\(\dfrac{1}{3.13}+...+\dfrac{1}{100.110}\)
Tìm x thuộc Z biết :
( 1/1.101 + 1/2.102 + 1/3.103 +...+ 1/10.100 ).x = 1/1.11 + 1/2.12 + 1/3.13 + ...+ 1/100.110
\(E=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+.........+\frac{1}{10.110}\)
\(F=\frac{1}{1.11}+\frac{1}{2.12}+\frac{1}{3.13}+.........+\frac{1}{100.110}\)
tính tỉ số \(\frac{E}{F}\)
\(100E\)\(=\frac{100}{1.101}+\frac{100}{2.102}+..........+\frac{100}{10.110}\)
\(=1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+........+\frac{1}{10}-\frac{1}{110}\)
\(10F=\frac{10}{1.11}+\frac{10}{2.12}+......+\frac{10}{100.110}\)
\(=1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+......+\frac{1}{100}-\frac{1}{110}\)
\(=1+\frac{1}{2}+...+\frac{1}{10}+\frac{1}{11}+....+\frac{1}{100}-\frac{1}{11}-\frac{1}{12}-....-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{110}\)
\(=1+\frac{1}{2}+...+\frac{1}{10}-\frac{1}{101}-\frac{1}{102}-...-\frac{1}{110}\)\(=100E\)
\(\Rightarrow10F=100E\Rightarrow\frac{E}{F}=\frac{1}{10}\)
Tìm x bít
\(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}.x=\frac{1}{1.11}+\frac{1}{2.12}+\frac{1}{3.13}+...+\frac{1}{100.110}\)
\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103+...}+\frac{1}{10.110}\)
\(A=\frac{1}{100}(\frac{100}{1.101}+\frac{100}{2.102}+\frac{100}{3.103}+...+\frac{100}{10.110})\)
\(A=\frac{1}{100}(\frac{1}{1}-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110})\)
\(A=\frac{1}{100}((\frac{1}{1}+\frac{1}{2}+...+\frac{1}{10})-(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}))\) ok?
\(B=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
\(B=\frac{1}{10}(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110})\)
\(B=\frac{1}{10}(\frac{1}{1}-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110})\)
\(B=\frac{1}{10}((\frac{1}{1}+\frac{1}{2}+...+\frac{1}{100})-(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}))\)=\(\frac{1}{10}((\frac{1}{1}+\frac{1}{2}+...+\frac{1}{10})-(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}))\)
B=10A
A.x=10A suy ra x=10
gõ xong mém xỉu. :)
Tìm x , bíÊt:
\(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}x=\frac{1}{1.11}+\frac{1}{2.12}+\frac{1}{3.13}+...+\frac{1}{100.110}\)