\(x^2+x-4+\left(x+6\right).\sqrt{x+2}=0\)
toán truong chuyen lam duoc tick cho
GPT:\(\frac{\left(x+1\right)\left(x+28\right)\left(x+4\right)\left(x-10\right)\left(-5\right)}{\sqrt{x}\left(x-6\right)^{\frac{1}{2}}}\ln\left(x^2-10\right)=0\)
Nhân tài đâu giúp mình với mình tick cho
Cho A= \(\left[\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)với x > 0, x khác 4
a) Rút gọn A
b) Tính A với x = 6-2\(\sqrt{5}\)
\(\dfrac{\sqrt{X}-4}{-4}\)ĐÁP ÁN A
B TỰ THAY
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)
ai lam đc mink tick thanks
x=1
Mik tính bằng máy tính đó. Mik mới học lớp 8 thôi, chưa giải được. ^^
Cho A=\(\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x khác 4
a) Rút gọn A
b) Tính A với x = 6-2√5
a) Ta có: \(A=\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)
\(=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{-4}=-\sqrt{x}+1\)
b) Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=-\sqrt{6-2\sqrt{5}}+1=-\left(\sqrt{5}-1\right)+1=-\sqrt{5}+1+1=2-\sqrt{5}\)
rút gọn
C=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right)\div\dfrac{\sqrt{x}}{x-4}vớix>0,x\ne4\)
D=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x+1}}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}vớix>1,x\ne4,x\ne9\)
lm nhanhgiups mk nhé!Mk đang cần gấp!
c) Ta có: \(C=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
d)
Sửa đề: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
Ta có: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)
\(=\dfrac{x+4}{2x-8}\)
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).
\(2\left(x-4\right)\sqrt{x-2}+\left(x-2\right)\sqrt{x+1}+2x-6=0\)
a, \(\dfrac{\sqrt[]{7-2\sqrt[]{6}}}{\sqrt[]{6}-1}\)
b, 2.|x+y|.\(\sqrt[]{\dfrac{1}{x^2+2xy+y^2}}\) (x+y>0)
c, \(\dfrac{\left(x-5\right)^4}{\left(4-x\right)^2}\)-\(\dfrac{x^2-25}{x-4}\)(x<4)