Chứng minh rằng số
11.....1 2 11.....1 hợp số với mọi n \(\in\)\(ℕ^∗\)
Bài 1 Chứng minh rằng số
11.....1. \((\)n chữ số\()\)2 . 11.....1 \((\)n chữ số\()\)la hop so voi moi n \(\in\)\(ℕ^∗\)
Chứng minh: 11...11211...11 (n số 1 ở 2 bên) là hợp số với mọi n
Đặt A=\(11...112111...1\)
\(\Rightarrow A=1111...100000..0+11111..11\)
\(\Rightarrow A=111....1\times10..0+1111....1\)
\(\Rightarrow A=11..1\times\left(1000..0+1\right)\)
\(\Rightarrow A⋮111..1\)
Mà A>111...1
Vậy A là hợp số
Thế số 2 đi đâu rồi bạn?
Nó bay lên trời hay chui xuống đât?
nó làm đúng rùi đó nhưng chưa rõ số chữ số thôi
giúp mik bài này nha
Chứng minh rằng số A=111..11(n số)2111...11(n số 1) là hợp số n>=1Chứng minh rằng số A=111..11(n số)2111...11(n số 1) là hợp số với n>=1
Đặt 111....1 ( n số 1 ) = a
=> 211....1( n số 1) = 2.1000....0( n số 0) + a = 2.(9a+1)+a = 18a+2+a = 19a+2
=> A = a+19a+2 = 20a+2 = 2.(10a+1) chia hết cho 2
Mà A > 2 => A là hợp số
=> ĐPCM
k mk nha
Chứng minh rằng số A = 11...211...1(có n số 1) là hợp số với n \(\in\)N*
Chứng tỏ rằng với mọi Số tự nhiên n khác 0 thì số : 11...1 2 11...1 là hợp số
Đặt A=11..121..1
=>A=11..112
Vì thế A có ít nhất 3 ước là 1;11...11 và chính A
=>AA là hợp số
Tick nha
Bài 1: Tìm các số nguyên x ; y sao cho \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
Bài 2:
a) Chứng minh rằng số 11...12 (n c/s 1) x 11...1 (n c/s 1) là hợp số với mọi \(n\in N\)
b) Tìm số nguyên n sao cho: \((3n+2)⋮(n-1)\)
Bài 1 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
\(\frac{5}{x}=\frac{1+2y}{6}\)
=> x ( 1+2y ) = 5 . 6
=> x ( 2y+1 ) = 30
=> x;2y+1 \(\in\) Ư(30)
vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}
Ta có bảng
2y+1 | 1 | 3 | 5 | 15 | -1 | -3 | -5 | -15 |
x | 30 | 10 | 6 | 2 | -30 | -10 | -6 | -2 |
y | 0 | 1 | 2 | 7 | -1 | -2 | -3 | -8 |
Vậy các cặp x;y tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\)
Bài 2 , b
(3n+2) \(⋮\) n-1
=> 3(n-1) + 5 \(⋮\) n-1
Vì 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}
n \(\in\) {2;6;0;-4}
Cho A = 11^9+11^8+11^7+....+11+1.
a, Chứng minh rằng A chia hết cho 5
b, Chứng mình rằng với mọi số tự nhiên n thì n^2+n+1 ko chia hết cho 4
A = 11^9 + 11^8 + ... + 11 + 1
=> 11A = 11^10 + 11^9 +..........+ 11^2 + 11
11A - A = (11^10 + 11^9 +..........+ 11^2 + 11 ) - (11^9 + 11^8 + ... + 11 + 1)
10A = 11^10 - 1
A = (11^10 - 1 ) : 10
vì 11^10 có tận cùng = 1 => (11^10 - 1) có tận cùng = 0 =>(11^10 - 1 ) : 10 có tận cùng là 0 .
. Vậy A chia hết cho 5
hok tốt
Chứng minh rằng số A = 11...211...(có n số 1) là hợp số với n \(\in\)N*
A = 11...1211...1 ( n c/s 1 )
A = 11...100...0 + 11...1 ( n+1 c/s 1 ; n c/s 0 )
A = 11...1 . ( 10n + 1 )
A đã được phân tích thành tích của hai thừa số lớn hơn 1
=> A là hợp số .
Vậy A là hợp số .
chứng minh rằng với mọi số tự nhiên n thì số (12^2n+1+11^n+2) chia hết cho 133
Ta có: 11^n+2+12^2n+1=121*11^12*144^n
=(133-12)*11^n+12*144^n
=133*11^n+12(144^n-11^n)
Ta có:133*11^n chia hết cho 133
144^n -11^n chia hết 133
Suy ra 11^n+12^2n+1chia hết cho 133