cho đa thức P(x) = (x+5)(x+10)(x+15)(x+20) +2016
tìm số dư trong phép chia P(x) cho x2 + 25x + 120
Cho P(x)=(x+5)(x+10)(x+15)(x+20)+2018. Tìm số dư khi chia P(x) cho x^2+25x+120
b1 phân tích đa thức thành nhân tử \(x^4+2018x^2+2017x+2018\)
b2. cho a,b,c,d thuộc R thỏa mãn \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}\)tính \(\frac{a+b}{c-d}\left(c\ne d\right)\)
b3. cho đa thức P(x)=(x+5)(x+10)(x+15)(x+20)=2016 tìm số dư trong phép chia P(x) cho đa thức \(x^2+25x+120\)
giúp mk nha
\(x^4+2018x^2+2017x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x.\left(x^3-1\right)+2018.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2018.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{7}=\frac{c}{5}=\frac{d}{6}=\frac{c-d}{-1}\)
\(\frac{a+b}{7}=\frac{c-d}{-1}\Rightarrow\frac{a+b}{c-d}=-7\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=k\)
\(\Rightarrow a=3k;b=4k;c=5k;d=6k\)
\(\frac{a+b}{c-d}=\frac{3k+4k}{5k-6k}=\frac{7k}{-k}=-7\)
Cho đa thức Q=(x+3)(x+5)(x+7)(x+9)+2014. Tìm số dư trong phép chia đa thức Q cho đa thức x2+12x+32.
Cho đa thức f(x)=x^3+x^2-2
Số dư trong phép chia đa thức f(x) cho x+1 là f(-1) =-2
Số dư trong phép chia đa thức f(x) cho x-2 là f(2) =10
Số dư trong phép chia đa thức f(x) cho x-1 là f(1)=0,nghĩa la f(x) chia hết cho (x-1)
Em háy chọn 1 đa thức f(x) cho (x-a) với f(a) bằng cách cho a nhận các giá trị bất kì để cùng kiểm tra kết quả sau :
"Số dư trong phép chia đa thức f(x) cho (x-a) đúng bằng f(a)’’
Cho mình xin cách làm đi
Nó là định lí Bézout đấy bạn ^^
Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)
Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)
Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)
Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a
Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm
khi chia đa thức f(x) cho x + 3 thf dư (- 15 ), chia cho x - 5 thì dư 9 . tìm phần dư của phép chia đa thức f(x) cho ( x + 3)( x - 5)
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Tìm số dư trong phép chia đa thức f(x) cho đa thức g(x)
a) f(x) = x⁴ – 5x³ + 2x – 10. g(x) = x – 5
b) f(x) = 8x² – 6x + 5. g(x) = 2x – 1
\(a,f\left(x\right):g\left(x\right)=\left[\left(x-5\right)\left(x^3+2\right)\right]:\left(x-5\right)=x^3+2\\ \Rightarrow\text{Dư }0\\ b,f\left(x\right):g\left(x\right)=\left(8x^2-4x-2x+1+4\right):\left(2x-1\right)\\ =\left[4x\left(2x-1\right)-\left(2x-1\right)+4\right]:\left(2x-1\right)\\ =4x-1\left(\text{dư }4\right)\)
Tìm số dư trong phép chia đa thức f(x) cho đa thức g(x)
a) f(x) = x⁴ – 5x³ + 2x – 10. g(x) = x – 5
b) f(x) = 8x² – 6x + 5. g(x) = 2x – 1
b: \(=\dfrac{8x^2-4x-2x+1+4}{2x-1}=4x-1+\dfrac{4}{2x-1}\)
biết đa thức f(x) chia cho đa thức x-2 dư 7 , chia cho đa thức x2+1 dư 3x+5 . Tìm dư trong phép chia đa thức f(x) cho đa thức (x2+1)(x-2)
đơn giản thì trả lời đi , fly color à bạn :)))