Cho: A=11.3.5.....43.45/4.6.8.....46.48; B= 2.4.6.....44.46/5.7.9.....47.49
a) So sánh A và B
b) Chứng minh rằng: A<1/133 giải toán
Tính \(\left(\frac{1}{43.45}+1\right)\left(\frac{1}{44.46}+1\right)\left(\frac{1}{45.47}+1\right)\left(\frac{1}{46.48}+1\right)\)
ta chuyển phép tính trên thành
(44x44/43x45)x(45x45/44x46)x(46x46/45x47)x(47x47/46x48)
ta rút gọn thành
44x47/43x48 =2068/2064=517/516
\(x^2-1=\left(x-1\right)\left(x+1\right)\)
Ta có: \(\left(\frac{1}{43.45}+1\right)\left(\frac{1}{44.46}+1\right)\left(\frac{1}{45.47}+1\right)\left(\frac{1}{46.48}+1\right)\)
\(=\left(\frac{44.44}{43.35}\right)\left(\frac{45.45}{44.46}\right)\left(\frac{46.46}{45.47}\right)\left(\frac{47.47}{46.48}\right)\)
\(=\frac{44.47}{43.48}\)
\(=\frac{517}{516}\)
Bài 1; Tìm a;b \(\in N:\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{8}\)
Bài 2; So sánh :
a)\(\frac{n}{2n+3}và\frac{n+2}{2n+1}\) b)\(\frac{5^{2018}+1}{5^{2019}^{ }+1}\) và \(\frac{5^{2017}+1}{5^{2018}+1}\)
c) \(\frac{8^9+12}{8^9+7}\)và \(\frac{8^{10}+4}{8^{10}-1}\)
Bài 3; Có; A=\(\frac{1.3.5.....43.45}{4.6.8.....46.48}\) và B=\(\frac{2.4.6....44.46}{5.7.9....47.49}\)
a) So sánh A và B
b) Chứng minh : A < \(\frac{1}{133}\)
Cho A= \(\dfrac{4}{2.4}\)+\(\dfrac{4}{4.6}\)+\(\dfrac{4}{6.8}\)+...+\(\dfrac{4}{46.48}\)+\(\dfrac{4}{48.50}\)
\(A=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{48.50}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{50}\right)\)
\(=2\times\dfrac{12}{25}=\dfrac{24}{25}\)
\(=>A=4.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{46}-\dfrac{1}{48}+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=4.\left(\dfrac{25}{50}-\dfrac{1}{50}\right)=\dfrac{4.24}{50}=\dfrac{48}{25}\)
Cho A =4/2.4.6 +4/4.6.8+4/6.8.10+.......+4/46.48.50 tìm số nghịch đảo của A
Ta nhận thấy
\(\dfrac{1}{n\cdot\left(n+2\right)}-\dfrac{1}{\left(n+2\right)\cdot\left(n+4\right)}\\ =\dfrac{n+4}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}-\dfrac{n}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}\\ =\dfrac{n+4-n}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}\\ =\dfrac{4}{n\cdot\left(n+2\right)\cdot\left(n+4\right)}\)
\(A=\dfrac{4}{2\cdot4\cdot6}+\dfrac{4}{4\cdot6\cdot8}+\dfrac{4}{6\cdot8\cdot10}+...+\dfrac{4}{46\cdot48\cdot50}\\ =\dfrac{1}{2\cdot4}-\dfrac{1}{4\cdot6}+\dfrac{1}{4\cdot6}-\dfrac{1}{6\cdot8}+\dfrac{1}{6\cdot8}-\dfrac{1}{8\cdot10}+...+\dfrac{1}{46\cdot48}-\dfrac{1}{48\cdot50}\\ =\dfrac{1}{2\cdot4}-\dfrac{1}{48\cdot50}\\ =\dfrac{1}{8}-\dfrac{1}{2400}\\ =\dfrac{300}{2400}-\dfrac{1}{2400}\\ =\dfrac{299}{2400}\)
Số nghịch đảo của \(A\) là \(\dfrac{2400}{299}\)
A=43.45 và B=42.46 ko tính kq hãy so sánh :))
\(A=43.45=\left(44-1\right)\left(44+1\right)=44.44+44.1-44.1-1.1=44.44-1\)
\(B=42.46=\left(44-2\right)\left(44+2\right)=44.44+44.2-44.2-2.2=44.44-4\)
Nếu\(b< c\Rightarrow a-b>a-c\)
Mà \(1< 4\)
\(\Rightarrow44.44-1>44.44-4\Rightarrow A>B\)
tìm chữ số tận cùng của hiệu 2.4.6.8....46.48-1.3.5.....49
Mn giúp em với ạ
Tìm số tự nhiên n thỏa mãn 4 n = 4 3 . 4 5 ?
A. n = 32
B. n = 16
C. n = 8
D. n = 4
Đáp án là C
Ta có: 4 3 . 4 5 = 4 3 + 5 = 4 8 nên 4 n = 4 8 suy ra n = 8
Tìm số tự nhiên n thỏa mãn 4 n = 4 3 . 4 5
A. n = 32
B. n = 16
C. n = 8
D. n = 4
Đáp án: C
4 n = 4 3 . 4 5
4 n = 4 8
→ n= 8
A=1.2.3-2.3.4+3.4.5-4.5.6+5.6.7/2.4.6-4.6.8+6.8.10-810.12+10.12.14
Trả lời nhanh cho mình ạ