So sánh :\(\frac{2011.2012-1}{2011.2012}\)và \(\frac{2012.2013-1}{2012.2013}\)
so sánh \(\frac{2011.2012-1}{2011.2012}\)và \(\frac{2012.2013-1}{2012.2013}\)
\(\frac{2011.2012-1}{2001.2012}\)\(=\frac{2012.2013-1}{2012.2013}\)vì rút gọn hai phân số ta đều được kết quả là \(\frac{-1}{1}\)
Ta có \(\frac{2011.2012-1}{2011.2012}\)=\(\frac{2011^2+2011-1}{2011^2+2011}\)
Lại có \(\frac{2012.2013-1}{2012.2013}\)=\(\frac{2012^2+2012-1}{2012^2+2012}\)
Mặt khác có \(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)(với a<b )
\(\Rightarrow\)\(\frac{2012^2+2012-1}{2012^2+2012}\)<...............
còn lại bn tự làm nha dễ lắm
không tính giá trị của mỗi biểu thức, hãy so sánh\(\dfrac{2011.2012-1}{2011.2012}\)và\(\dfrac{2012.2013-1}{2012.2013}\)
Ta có: \(\dfrac{2012.2013-1}{2012.2013}\)=\(\dfrac{2012.2013}{2012.2013}-\dfrac{1}{2012.2013}\)(1)
\(\dfrac{2011.2012-1}{2011.2012}\)=\(\dfrac{2011.2012}{2011.2012}-\dfrac{1}{2011.2012}\)(2)
Ta thấy:\(\dfrac{1}{2011.2012}>\dfrac{1}{2012.2013}\)=>(1)>(2) (vì số bị trừ đều như nhau mà số trừ lớn hơn nên b/thức đó bé hơn)
Vậy \(\dfrac{2011.2012-1}{2011.2012}< \dfrac{2012.2013-1}{2012.2013}\)
Bài 1:
a/ Tính N \(=\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
b/ So sánh : \(\frac{2011.2012-1}{2011.2012}\) và \(\frac{2012.2013-1}{2012.2013}\);
\(\frac{-22}{45}\) ; \(\frac{-51}{133}\)và \(\frac{2^{225}}{3^{151}}\).
ai đang on giúp mk với nha, thanks nhìu
a)N=\(\frac{5\cdot2^{18}\cdot3^{18}\cdot2^{12}-2\cdot2^{28}\cdot3^{14}\cdot3^6}{5\cdot2^{28}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}=\frac{2^{30}\cdot3^{18}\cdot5-2^{29}\cdot3^{20}}{2^{28}\cdot3^{18}\cdot\left(5\cdot3-7\cdot2\right)}\)
\(=\frac{2^{29}\cdot3^{18}\cdot\left(5\cdot2-3\cdot3\right)}{2^{28}\cdot3^{18}}=\frac{2^{29}\cdot3^{18}}{2^{28}\cdot3^{18}}=2\)
Vậy N=2
b) *\(\frac{2011\cdot2012-1}{2011\cdot2012}=\frac{2011\cdot2012}{2011\cdot2012}-\frac{1}{2011\cdot2012}=1-\frac{1}{2011\cdot2012}\)\(\frac{2012\cdot2013-1}{2012\cdot2013}=\frac{2012\cdot2013}{2012\cdot2013}-\frac{1}{2012\cdot2013}=1-\frac{1}{2012\cdot2013}\)Ta có: \(\frac{1}{2011\cdot2012}>\frac{1}{2012\cdot2013}=>1-\frac{1}{2011\cdot2012}< 1-\frac{1}{2012\cdot2013}\)
hay \(\frac{2011\cdot2012-1}{2011\cdot2012}< \frac{2012\cdot2013-1}{2012\cdot2013}\)
Vậy \(\frac{2011\cdot2012-1}{2011\cdot2012}< \frac{2012\cdot2013-1}{2012\cdot2013}\)
*
Vì -22/45 và -51/133 là phân số âm; 2^225/3^151 là phân số dương nên
cả 2 phân số -22/45;-51/133 đều nhỏ hơn 2^225/3^151
So sánh phân số: \(\frac{2011.2012-3}{2011.2012}\) và \(\frac{2010.2011-3}{2010.2011}\)
So sánh A và B , biết rằng :
A = \(-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)và B = \(\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
So sánh A và B biết
A = \(\frac{2009}{2010}-\frac{2010}{2011}+\frac{2011}{2012}-\frac{2012}{2013}\)
B = \(-\frac{1}{2009.2010}-\frac{1}{2011.2012}\)
\(A=\left(1-\frac{1}{2010}\right)-\left(1-\frac{1}{2011}\right)+\left(1-\frac{1}{2012}\right)-\left(1-\frac{1}{2013}\right)=-\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(A=-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Vì 2010.2011 > 2009.2010 => \(\frac{1}{2010.2011}-\frac{1}{2009.2010}\)
\(-\frac{1}{2012.2013}>-\frac{1}{2011.2012}\)
=> A > B
\(A=\left(1-\frac{1}{2010}\right)-\left(1-\frac{1}{2011}\right)+\left(1-\frac{1}{2012}\right)-\left(1-\frac{1}{2013}\right)\)
\(A=-\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(A=-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Vì \(2010.2011>2009.2010\Rightarrow\frac{1}{2010.2011}< \frac{1}{2009.2010}\Rightarrow-\frac{1}{2010.2011}>\frac{1}{2009.2010}\)
\(A=-\frac{1}{2012.2013}\)
\(B=-\frac{1}{2011.2012}\)
\(-\frac{1}{2012.2013}>-\frac{1}{2011.2012}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
Tính A = 2012.S
S = 1/2 - 1/3 + 1/3 -1/4 + ......... +1/2011 -1/2012
S= 1/2 - 1/2012 = 1005/2012
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{2012}\)
\(S=\frac{1}{2}+0+0+0+...-\frac{1}{2012}\)
\(S=\frac{1}{2}-\frac{1}{2012}\)
\(S=\frac{1005}{2012}\)
\(A=\frac{2012}{1}\cdot\frac{1005}{2012}\)
\(A=1005\)
\(\Leftrightarrow S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow S=\frac{1}{2}-\frac{1}{2012}=\frac{1005}{2012}\)
=>A=\(\frac{2012\cdot1005}{1\cdot2012}=\frac{1005}{1}=1005\)
Tìm x
\(\frac{1}{2013}x+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2012.2013}=2\)
\(\frac{1}{2013}x+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2012.2013}=2\)
\(\frac{1}{2013}x+1+(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013})=2\)
\(\frac{1}{2013}x+1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)=2\)
\(\frac{1}{2013}x+1+\left(1-\frac{1}{2013}\right)=2\)
\(\frac{1}{2013}x+1+1-\frac{1}{2013}=2\)
\(\frac{1}{2013}x-\frac{1}{2013}+2=2\)
\(\frac{1}{2013}.\left(x-1\right)=2-2\)
\(\frac{1}{2013}.\left(x-1\right)=0\)
=> x - 1 = 0
x = 1
\(\frac{1}{2013}x+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2012.2013}=2\)
\(\frac{1}{2013}x+\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)=2\)
\(\frac{1}{2013}x+\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)=2\)
\(\frac{1}{2013}x+\left(1-\frac{1}{2013}\right)=2\)
\(\frac{1}{2013}x+\frac{2012}{2013}=2\)
\(\frac{1}{2013}x=2-\frac{2012}{2013}\)
\(\frac{1}{2013}x=\frac{2014}{2013}\)
\(x=\frac{2014}{2013}:\frac{1}{2013}\)
=> x=2014
Không thực hiện phép tính hãy so sánh
a) m = 19.90 và n = 31.60
b) p = 2011.2012 và q = 2015.2015
a, m = 19.90 = 19.3.30 = 57.30
n = 31.60 = 31.2.30 = 62.30
n > m
b, 2011 < 2015
2012 < 2015
2011.2012 < 2015.2015
p < q