cho 5x = 3y . Tính GT của BT \(\frac{5x^2+3y^2}{10x^2-3y^2}\)
Cho \(\frac{x}{3}=\frac{y}{5}\)Tính \(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)
Đặt \(\frac{x}{3}=\frac{y}{5}=k\)=> \(x=3k\) ; \(y=5k\)
Khi đó, ta có: C = \(\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}\)
= \(\frac{5.3^2.k^2+3.5^2.k^2}{10.3^2.k^2-3.5^2.k^2}\)
= \(\frac{k^2.\left(5.9+3.25\right)}{k^2.\left(10.9-3.25\right)}\)
= 8
\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)
\(C=\frac{3xy+5xy}{6xy-5xy}=\frac{8xy}{1xy}=8\)
cách này nhanh hơn không :v
1) Theo tinh chat phan thuc thi 2 phan thuc nao sau day bang nhau
A. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^4y^2}{12x^2}\)
B. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x^2}\)
C. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x}\)
D. \(\dfrac{5x^3y^4}{6xy^2}\) va \(\dfrac{10x^3y^2}{12x^2y}\)
Tính \(A=\frac{5x^2+3y^2}{10x^2-3y^2}\) và \(\frac{x}{3}=\frac{y}{5}\)
Ta gọi: \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Thay x = 3k và y = 5k vào A ta có: \(A=\frac{5^2.\left(3k\right)^2+3^2.\left(5k\right)^2}{10^2.\left(3k\right)^2-3^2.\left(5k\right)^2}=\frac{25.9k^2+9.25k^2}{100.9k^2-9.25k^2}=\frac{9.25k^2\left(1+1\right)}{9.25k^2\left(4-1\right)}=\frac{2}{3}\)
Tính giá trị biểu thức A=\(\frac{5x^2+3y^2}{10x^2-3y^2}\)với \(\frac{x}{3}=\frac{y}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{5}=n\Rightarrow x=3n;y=5n\)
\(\Rightarrow A=\frac{5.3^2n^2+3.5^2n^2}{10.3^2n^2-3.5^2n^2}=\frac{n^2\left(45+75\right)}{n^2\left(90-75\right)}=\frac{n^2.120}{n^2.25}=\frac{24}{5}\)
\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)
Thay 3y = 5x ; ta được:
\(A=\frac{5x^2+5x^2}{10x^2-5x^2}=\frac{2\times5x^2}{2\times5x^2-5x^2}=\frac{2\times5x^2}{5x^2\times\left(2-1\right)}=\frac{2\times5x^2}{5x^2\times1}=2\)
24/5 nha kn với mk nhé mk ko có bạn.
tính giá trị của biểu thức : A = 5x^2+3y^2/10x^2-3y^2 với x/3 = y/5
\(\frac{x}{3}=\frac{y}{5}\)\(\Rightarrow x=\frac{3y}{5}\)
Thay vào biểu thức A ta được:
\(A=\frac{5.\left(\frac{3y}{5}\right)^2+3y^2}{10.\left(\frac{3y}{5}\right)^2-3y^2}=\frac{\frac{9y^2+15y^2}{5}}{\frac{18y^2-15y^2}{5}}=\frac{24y^2}{3y^2}=8\)
Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k,y=5k\)
Ta có: \(A=\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{k^2\left(45+75\right)}{k^2\left(90-75\right)}=\frac{120k^2}{15k^2}=8\)
x/3 = y/5 => y = 5/3.x => y^2 = 25/9.x^2 => 3y^2 = 25/3.y^2
=> A =(5x^2+25/3.x^2)/(10x^2-25/3.x^2) = 40/3.x^2 / 5/3.x^2 = 8
Vậy A = 8
Tk mk nha
a) cho x^2 = y^2+z^2. chứng minh: (5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
b) cho 10x^2=10y^2+z^2. chứng minh: (7x-3y+2z)(7x-3y-2z)=(3x-7y)^2
Tính A=(5x^2+3y^2)/(10x^2-3y^2) với x/3=y/5
1)4x^5y^2-8x^4y^2+4x^3y^2 2)5x^4y^2-10x^3y^2+5x^2y^2 3)12x^2-12xy+3y^2 4)8x^3-8x^2y+2xy^2 5)20x^4y^2-20x^3y^3+5x^2y^4
1) \(4x^5y^2-8x^4y^2+4x^3y^2\)
\(=4x^3y^2\left(x^2-2x+1\right)\)
\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=4x^3y^2\left(x-1\right)^2\)
2) \(5x^4y^2-10x^3y^2+5x^2y^2\)
\(=5x^2y^2\left(x^2-2x+1\right)\)
\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)
\(=5x^2y^2\left(x-1\right)^2\)
3) \(12x^2-12xy+3y^2\)
\(=3\left(4x^2-4xy+y^2\right)\)
\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=3\left(2x-y\right)^2\)
4) \(8x^3-8x^2y+2xy^2\)
\(=2x\left(4x^2-4xy+y^2\right)\)
\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=2x\left(2x-y\right)^2\)
5) \(20x^4y^2-20x^3y^3+5x^2y^4\)
\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)
\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)
\(=5x^2y^2\left(2x-y\right)^2\)
1: 4x^5y^2-8x^4y^2+4x^3y^2
=4x^3y^2(x^2-2x+1)
=4x^3y^2(x-1)^2
2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)
3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)
4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)
5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)
Cho x/3=y/5.tính giá trị biểu thức A=5x mũ 2+3y mũ 2/10x^2-3y^2
Đặt \(\frac{x}{3}=\frac{y}{5}=k\left(k≠0\right)\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\Rightarrow A=\frac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\)
\(\Rightarrow A=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\left(\text{do k ≠ 0}\right)\)