Cho a,b >0 va a +b +2ab = 12. Tim min cua P =\(\frac{a^2+ab}{2b+a}\)+\(\frac{b^2+ab}{2a+b}\)
Cho a,b>0 thỏa a+b+2ab=12 Tính GTNN của M = \(\frac{a^2+ab}{a+2b}+\frac{b^2+ab}{b+2a}\)
Cho a,b là các số dương thỏa mãn a+b+2ab=12
tính GTNN của A=\(\frac{a^2+ab}{a+2b}+\frac{b^2+ab}{2a+b}\)
Ta có: \(12=a+b+2ab\ge2ab+2\sqrt{ab}\Rightarrow0< ab\le4\)
Chú ý: \(2ab=12-a-b\) . Do đó:
\(A=\frac{2a^2+2ab}{2a+4b}+\frac{2b^2+2ab}{4a+2b}\)
\(=\frac{2\left(a^2+4\right)+4-a-b}{2a+4b}+\frac{2\left(b^2+4\right)+4-a-b}{4a+2b}\)
\(\ge\frac{7a-b+4}{2a+4b}+\frac{7b-a+4}{4a+2b}=\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}+\frac{8}{3}\ge\frac{8}{3}\)
P/s: Em chưa check lại đâu, anh tự check đi:D Và chú ý cái dấu "=" cuối cùng của em chỉ đúng khi a + b +2ab = 12.
Cách khác:
Dễ thấy \(0< ab\le4\) (như bài trên)
\(A-\frac{8}{3}=\frac{2\left(a-2\right)^2}{2a+4b}+\frac{2\left(b-2\right)^2}{4a+2b}+\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}\ge0\)
P/s: Nếu bài trên đúng thì bài này đúng, bài trên sai thì bài này sai, vì bài này được suy ra từ bài trên:v
Cho 2 số thực a,b thỏa mãn: lal khác lbl va ab khac 0 thoa man \(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)
Tính P=\(\frac{a^3+2a^2b+2b^3}{2a^3+ab^2+2b^3}\)
cho a,b,c > 0 va abc = 0 tim min
\(a^3+b^3+c^3+\frac{2c}{a+b}+\frac{2a}{b+c}+\frac{2b}{c+a}\)
a, b, c > 0 mà sao abc = 0 được vậy nhỉ:))
#)Góp ý :
Nguyễn Khang chuẩn :v
Rõ bảo mong k muốn ai thấy nick này mak cứ ló mặt ra lm chi ???
Lấy nick tth_new có ph nhanh hơn k ^^
Cho a>=0,b>=0 thoa man 2a+3b<=6 va 2a+b<=4.Tim max va min cua bieu thuc A=a^2 -ab -b^2
Ban nao biet giup minh voi.TKS
cho a,b dương thỏa mãn a+b+2ab=12
Tìm min A=\(\dfrac{a^2+ab}{a+2b}+\dfrac{b^2+ab}{2a+b}\)
Lời giải:
\(A=\frac{a(a+b)}{a+2b}+\frac{b(b+a)}{2a+b}=(a+b)\left(\frac{a}{a+2b}+\frac{b}{2a+b}\right)\)
Áp dụng BĐT Cauchy_Schwarz và AM-GM:
\(\frac{a}{a+2b}+\frac{b}{2a+b}=\frac{a^2}{a^2+2ab}+\frac{b^2}{2ab+b^2}\geq \frac{(a+b)^2}{(a+b)^2+2ab}\geq \frac{(a+b)^2}{(a+b)^2+\frac{(a+b)^2}{2}}=\frac{2}{3}\)
Do đó:
\(A\geq \frac{2(a+b)}{3}\)
Cũng theo BĐT AM-GM: \(12=a+b+2ab\leq a+b+\frac{(a+b)^2}{2}\)
\(\Leftrightarrow (a+b)^2+2(a+b)-24\geq 0\)
\(\Leftrightarrow (a+b-4)(a+b+6)\geq 0\Rightarrow a+b\geq 4\)
\(\Rightarrow A\geq \frac{2}{3}(a+b)\geq \frac{8}{3}\)
Vậy \(A_{\min}=\frac{8}{3}\Leftrightarrow a=b=2\)
Bài 1: Cho a,b thỏa mãn \(a^2\) +\(ab^2-2b^4=0\) ; a,b≠ 0; \(b^2≠ 3a ; b≠ 0 ; b≠-2a\)
Tính A= \(\frac{a+2b^2}{3a-b^2}+\frac{ab-3b^2}{2ab+b^2}\)
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm giá trị nhỏ nhất của biểu thức\(A=\frac{a^2+ab}{a+2b}+\frac{b^2+ab}{2a+b}\)
Lời giải:
$A=\frac{a(a+2b)-ab}{a+2b}+\frac{b(2a+b)-ab}{2a+b}$
$=a+b-\left(\frac{ab}{a+2b}+\frac{ab}{2a+b}\right)$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{ab}{a+2b}+\frac{ab}{2a+b}\leq \frac{ab}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)+\frac{ab}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{3}$
$\Rightarrow A\geq \frac{2}{3}(a+b)$
Mà:
$12=a+b+2ab\leq a+b+\frac{(a+b)^2}{2}$ (theo BĐT AM-GM)
$\Leftrightarrow (a+b)^2+2(a+b)-24\geq 0$
$\Leftrightarrow (a+b+6)(a+b-4)\geq 0$
$\Rightarrow a+b\geq 4$
Do đó: $A\geq \frac{2}{3}(a+b)\geq \frac{8}{3}$
Vậy $A_{\min}=\frac{8}{3}$
Dấu "=" xảy ra khi $a=b=2$
Cho a,b,c >0. a+b+c =2
Tìm min P=\(\frac{a}{ab+2c}+\frac{b}{bc+2a}+\frac{c}{ac+2b}\)