Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trâm Anh
Xem chi tiết
GV
9 tháng 3 2018 lúc 14:09

Điều kiện để có pt bậc hai có 2 nghiệm phân biệt cùng dấu là:

\(\hept{\begin{cases}\Delta'>0\\x_1.x_2=\frac{c}{a}>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k^2-4k+5>0\\4k-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(k-2\right)^2+1>0\\k>\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow k>\frac{5}{4}\)

Trâm Anh
9 tháng 3 2018 lúc 14:35

cảm ơn bạn nha

Nguyễn Tiến Thịnh
29 tháng 3 2019 lúc 20:13

không biết

Lê Quang Thiên
Xem chi tiết
Lê Quang Thiên
5 tháng 4 2019 lúc 11:53

Mik cần gấp vì chj nay phải đi hok.

Huỳnh Trần Thảo Nguyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 12 2019 lúc 2:10

Phương trình có hai nghiệm trái dấu khi và chỉ khi Giải sách bài tập Toán 10 | Giải sbt Toán 10 suy ra m < -2.

    Tổng của hai nghiệm bằng -3 khi Giải sách bài tập Toán 10 | Giải sbt Toán 10 thỏa mãn điều kiện m < -2.

    Đáp số: m = -5.

Ctuu
Xem chi tiết
Hồ Nhật Phi
18 tháng 3 2022 lúc 20:39

1) Để phương trình có hai nghiệm trái dấu thì

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.

Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.

2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.

Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.

3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.

4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).

Dấu "=" xảy ra khi x=16/5 (nhận).

Vậy minA=7/16 tại m=16/5.

Mai Trần
Xem chi tiết
lê thị thu hà
Xem chi tiết
ViênVănNghĩa9b
Xem chi tiết
Trâm Anh
Xem chi tiết
ngonhuminh
9 tháng 3 2018 lúc 17:56

k thỏa mãn hệ : \(\left\{{}\begin{matrix}\Delta_x>0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}k^2-4k+5>0\\\dfrac{4k-5}{1}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(k-2\right)^2+1>0\\k>\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow k>\dfrac{5}{4}\)