cm hằng đẳng thức
a mũ 3+ b mũ 3+ c mũ 3=(a+b+c).(a mũ 2+ b mũ 2+ c mũ 2-ab-bc-ac)
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2= AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
Chúc bạn học tốt!
Tam giác ABC vuông tại C thì
A=AB mũ 2 =AC mũ 2+BC mũ 2
B= AC mũ 2=AB mũ 2 +BC mũ 2
C=BC mũ 2 = AC mũ 2 +AB mũ 2
D cả A,B,C đều đúng
Xét △ABC vuông tại C có:
\(AB^2=AC^2+BC^2\) (định lí Pytago)
Vậy chọn đáp án A
CHo a ,b,c,d Khác 0 thỏa mãn b mũ 2 =ac;c mũ 2 = bd. Chứng Minh rằng a mũ 3 +b mũ 3 +c mũ 3 /b mũ 3+c mũ 3+d mũ 3 =a/d
Chứng minh các đẳng thức sau:
1. ( a + b ) mũ 2 = ( a - b ) mũ 2 + 4ab
2. a mũ 4 - b mũ 4 = ( a - b ) ( a + b ) ( a mũ 2 + b mũ 2 )
3. ( a mũ 2 + b mũ 2 ) ( x mũ 2 + y mũ 2 ) = ( ax - by ) mũ 2 + ( bx + ay ) mũ 2
Chứng minh các đẳng thức sau:( vế trái = vế phải )
1. ( a + b ) mũ 2 = ( a - b ) mũ 2 + 4ab
2. a mũ 4 - b mũ 4 = ( a - b ) ( a + b ) ( a mũ 2 + b mũ 2 )
3. ( a mũ 2 + b mũ 2 ) ( x mũ 2 + y mũ 2 ) = ( ax - by ) mũ 2 + ( bx + ay ) mũ 2
1. \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(VP=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)
\(\Rightarrow VT=VP\)
2. \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
\(VP=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)=a^4+a^2b^2-b^2a^2-b^4=a^4-b^4\)
\(\Rightarrow VT=VP\)
3. \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax-by\right)^2+\left(bx+ay\right)^2\)
\(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(VP=\left(ax-by\right)^2+\left(bx+ay\right)^2=a^2x^2-2axby+b^2y^2+b^2x^2+2bxay+a^2y^2=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Rightarrow VT=VP\)
cho các số a,b,c khác 0 và thỏa mãn : ab/a+b=bc/b+c=ca/c+a
tính giá trị biểu thức : p = ab mũ 2 + bc mũ 2 + ca mũ 2/a mũ 3 + b mũ 3 + c mũ 3
a) Tìm số tự nhiên a,b thỏa mãn 10 mũ a+483=b mũ 2
b) Tìm các số tự nhiên a, b,c thỏa mãn: a mũ 2+ab+ác=20×ab+b mũ 2+BC=180×ac+BC+c mũ 2=200
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
cho số a,b,c thỏa a mũ 3+b mũ 3+c mũ 3=a cmr a+b+c+ab+bc+ac <= 1+ căn 3
trên tia Ox lấy AB sao cho OA=5cm;OB=10 cm
a)Tính AB
B)chứng tỏ A là trung điểm OB.vẽ C thuộc Ox sao cho BC=2cm.Tính OC
2)Chứng minh rằng:
A)3 mũ 1+3 mũ 2+3 mũ 3....+3 mũ 2010chia hết 13
b)27 mũ 10+ 3 mũ 29+9 mũ 14 chia hết 117