Chứng minh rằng : abc = a + b + c
và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
chứng minh rằng :Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=2 và a+b+c =abc thì ta có \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)=2
\(\text{Ta có: }\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{c}{abc}+\frac{a}{abc}+\frac{b}{abc}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{a+b+c}{abc}\right)\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\text{ và }a+b+c=abc\)nên:
\(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{abc}{abc}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a+b+c=abc. Chứng minh rằng: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Chứng minh rằng : nếu a + b + c = abc ; \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
chứng minh rằng nếu a+b+c=0 thì \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=0\)
Chứng minh rằng: \(a+b+c=ab+bc+ac=abc\ne0\)
và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\pm2\)
Chứng minh rằng nếu \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)và a+b+c=2 thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (abc khác 0) . chứng minh rằng a+b+c = abc \(\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1\)
\(\Leftrightarrow\frac{a+b+c}{abc}=1\Leftrightarrow a+b+c=abc\left(đpcm\right)\)
Chứng minh rằng
a) \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết abc=1
b) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Theo bài ra ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}\left(1=abc\right)=\frac{1}{b+1+bc}\)(chia cả tử lẫn mẫu cho a) (1)
\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{1+bc+b}\)(Nhân cả tử lẫn mẫu cho b) (2)
Do đó ta có :
\(=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=\frac{1+bc+b}{bc+b+1}=1\)(đpcm)