Cho x+y=4;x*y=-5,ko tính cụ thể x;y.hãy tính :x-y
Cho x,y khác 0 tìm Min
P=x^4/y^4 + y^4/x^4 - x^2/y^2 - y^2/x^2 + x/y + y/x
cho x y z thỏa mãn x+y+z+căn xyz=4 cm căn x(4-y)(4-z) + căn y(4-x)(4-z) +căn z(4-x)(4-y) - căn xyz= 8
Cho x,y nguyên ; x,y khác -1 thoả (x^4-1)/(y+1) + (y^4-1)/(x+1) là số nguyên .CMR x4y44-1 chia hết cho y+1
Cho x,y,z>0 thỏa mãn x+y+z=1. CMR: x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=1
Cho x,y,z>0 thỏa mãn x+y+z=1. CMR: x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=1
cho x,y,z>0 thoa man x+y+z=1.CMR \(\dfrac{x^4+y^4}{x^3+y^3}+\dfrac{y^4+z^4}{y^3+z^3}+\dfrac{z^4+x^4}{z^3+x^3}\ge1\)
Bài này có đúng là của lớp 7 không bạn?
Caâu 29. Cho \(\dfrac{x}{3}\) =\(\dfrac{y}{4}\) và x.y12 Kết quả tìm được của x và y là:
A. x = 3; y = 4 và x = -3; y = - 4
B. x = 2; y = 4 và x = -2; y = - 4
C. x = 1; y = 4 và x = -1; y = - 4
D. x = 4; y = 5 và x = -4; y = - 5
cho zx,y,z >0 thoả mãn x+y+z=1 chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)
ai nhanh cho 3 tick
Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)
Áp dụng vào bài toán ta có:
\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)
\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:
\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)
Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)
Dấu = khi \(x=y=z=\frac{2008}{3}\)
Cho x,y,z>0 và x+y+z=2020
CMR: a, x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=2020