CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN , ĐCAO BE VÀ CF CẮT NHAU TẠI H
A. CM AE.AC=AF.AB
B. TAM GIÁC AEF ĐỒNG DẠNG VS ABC
C. AH CẮT BD TẠI D , ED CẮT FC TẠI I . CMR HI.CF=HF.IC
Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
Cho tam giác ABC có 3 đường cao AD,BE,CF cắt nhau tại H
a, CM AE.AC=AF.AB
b, CM AEF đồng dạng ABC
c, BFD đồng dạng BCA
d, CFD đồng dạng CBH
e, gọi I là giao điểm EF và BC CM IF . IE = IB.IC
`a,` CM `AE.AC=AF.AB`
Xét \(\Delta ABE\) và \(\Delta AFC\) ta có :
\(\left\{{}\begin{matrix}\widehat{A}:chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)
Do đó \(\Delta ABE\sim\Delta AFC\left(g.g\right)\)
`=> (AE)/(AF)=(AB)/(AC)`
`<=>AE .AC = AF .AB->đpcm`
`b,` Xét \(\Delta AEF\) và \(\Delta ABC\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{AE}{AB}=\dfrac{AF}{AC}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
`c,` Xét \(\Delta BFC\) và \(\Delta BDA\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFC}=\widehat{BDA}=90^o\end{matrix}\right.\)
Do đó \(\Delta BFC\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{BF}{BD}=\dfrac{BC}{BA}\Rightarrow\dfrac{BF}{BC}=\dfrac{BD}{BA}\)
Xét \(\Delta BHD\) và \(\Delta BCA\) có :
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta BFD\sim\Delta BCA\left(c.g.c\right)\)
`d,` Xét \(\Delta CDH\) và \(\Delta CFB\) có :
\(\left\{{}\begin{matrix}\widehat{C}:chung\\\widehat{CDH}=\widehat{CFB}=90^o\end{matrix}\right.\)
Do đó \(\Delta CDH\sim\Delta CFB\left(g.g\right)\)
\(\Rightarrow\dfrac{CF}{CD}=\dfrac{CB}{CH}\)
\(\Rightarrow\dfrac{CF}{CB}=\dfrac{CD}{CH}\)
`e,` vì \(\Delta AEF\sim\Delta ABC\) ( cm câu `b` ) nên
\(\widehat{F_2}=\widehat{C}\) ( hai góc tương ứng )
Mà \(\widehat{F_2}=\widehat{F_1}\) ( đối đỉnh )
Nên \(\widehat{C}=\widehat{F_1}\)
Xét \(\Delta IFB\) và \(\Delta IEC\) có :
\(\left\{{}\begin{matrix}\widehat{I}:chung\\\widehat{F_1}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)
Do đó \(\Delta IFB\sim\Delta ICE\left(g.g\right)\)
\(\Rightarrow\dfrac{IF}{IC}=\dfrac{IB}{IE}\)
Vậy `IF.IE=IB.IC->đpcm`
Cậu tự vẽ hình ra đc ko ạ
Cho Tam giác ABC nhọn, đường cao BE, CF cắt nhau tại H
a) CM:AE.AC=AF.AB
b)Tam giác AEF và tam giác ABC đồng dạng
c) Kẻ AH cắt BC tại D, ED cắt FC tại I. CMR: HI.CF=HF.CI
Thực sự là câu c quá khó đối với mình khiến mình phát uất đến suýt cả khóc nên mong các bạn giải hộ mình ;-;
Phần c) trước hết ta chứng minh HD là phân giác của \(\widehat{FID}\)
Xét \(\Delta DBH\)và \(\Delta EBC\)có
\(\widehat{BDH}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{CBE}\)chung
\(\Delta DBH\approx\Delta EBC\left(g.g\right)\)
\(\Rightarrow\frac{BD}{BE}=\frac{BH}{BC}\)(2 cặp cạnh tương ứng tỉ lệ)
\(\Rightarrow\frac{BD}{BH}=\frac{BE}{BC}\)(tính chất của tỉ lệ thức)
Xét \(\Delta BDE\)và \(\Delta BHC\)có:
\(\widehat{CBE}\)chung
\(\frac{BD}{BH}=\frac{BE}{BC}\)(chứng minh trên)
\(\Delta BDE\approx\Delta BHC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BED}=\widehat{BCH}\)(2 góc tương ứng)
\(\Rightarrow\widehat{BED}=\widehat{BCF}\)
Ta có:
\(\widehat{BED}+\widehat{DEC}=90^0\left(=\widehat{BEC}\right)\)
\(\Rightarrow\widehat{BCF}+\widehat{DEC}=90^0\)
Và vì \(\Delta FBC\)vuông tại F
\(\Rightarrow\widehat{BCF}+\widehat{FBC}=90^0\)(vì phu nhau)
Do đó :\(\widehat{DEC}=\widehat{FBC}\)(cùng phụ với \(\widehat{BCF}\))
\(\Rightarrow\widehat{DEC}=\widehat{FBD}\)
Chứng minh tương tự, ta được: \(\widehat{BFD}=\widehat{ECD}\)
Xét \(\Delta BFD\)và \(\Delta ECD\)có:
\(\widehat{BFD}=\widehat{ECD}\)(chứng minh trên)
\(\widehat{FBD}=\widehat{CED}\)(chứng minh trên)
\(\Rightarrow\Delta BFD\approx\Delta ECD\left(g.g\right)\)
\(\Rightarrow\widehat{BDF}=\widehat{EDC}\)(2 góc tương ứng)
Ta có:
\(\widehat{BDF}+\widehat{ADF}=90^0\left(=\widehat{BDA}\right)\)
\(\Rightarrow\widehat{EDC}+\widehat{ADF}=90^0\)
Và \(\widehat{CDE}+\widehat{EDA}=90^0\left(=\widehat{CDA}\right)\)
Do đó: \(\widehat{ADF}=\widehat{EDA}\)
\(\Rightarrow\widehat{HDF}=\widehat{HDI}\)(với \(H\in FI\)hay \(H\in FC\))
\(\Rightarrow DH\)là phân giác của \(\widehat{FDI}\)(1)
Xét \(\Delta FDI\)có (1)
\(\Rightarrow\frac{HI}{FH}=\frac{DI}{DF}\)(tính chất) (2)
Ta có: \(AD\perp BC\Rightarrow HD\perp CD\)
Do đó \(CD\)là phân giác ngoài của \(\widehat{FDI}\)(với C là giao điểm của CD và FI) (3)
Xét \(\Delta FDI\)có (3)
\(\Rightarrow\frac{CI}{CF}=\frac{DI}{FD}\)(tính chất) (4)
Từ (2) và (4)
\(\Rightarrow\frac{HI}{FH}=\frac{CI}{CF}\left(=\frac{DI}{DF}\right)\)
\(\Rightarrow HI.CF=FH.CI\)(điều phai chứng minh).
cho tam giác nhọn ABC có 2 đường cao AC,BE, CF cắt nhau tại H. M là trung điểm của BC. cm:
a/ AE.AC=AF.AB
b/ góc AEF = góc ABC
c/ AF.AB=AH.AB; AE.AC=AH.AD
d/ DH.DA=DB.DC
e/ H là tâm đường tròn nội tiếp tam giác DEF
f/ DMEF nội tiếp
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
DO đó: ΔABE\(\sim\)ΔACF
SUy ra: AB/AC=AE/AF
hay \(AB\cdot AF=AE\cdot AC\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
Cho tam giác ABC nhọn các đường cao AD,BE,CF cắt nhau tại H,EF cắt nhau tại I,ED cắt nhau tại K chứng minh rằng:
a, AE x AC= AF x AB
b,tam giác AEF đồng dạng với tam giác ABC
c, tam giác AEF đồng dạng với tam giác DEC
d, IF x IE=IB x IC
e,góc EFC=góc EAH
f, EH là phân giác của góc DEF
g,tam giác CHA đồng dạng với tam giác CEF
h, BF x BA + CE x CA =BC2
I, HF x CK = HK x CF
K, cách đều các cạnh của tam giác DEF
l, gọi O là trung điểm của BC . cm: góc DEF= góc EOF
m, trên các đường cao BE và CF lần lượt lấy M và N sao cho góc ANB = góc AMC = 90 độ .cm:AN = AM
Em viết đề sai lung tung. Em viết chính xác lại nhé
cho tam giác abc có 3 góc nhọn, hai đường cao BE, CF, AH cắt nhau tại H: a)AE.AC=AF.AB . b) CMR: Tam giác(tg)AEF~tgABC. c)CMR: tam giác AEF đồng dạng tam giác CED từ đó suy ra: Tia EH là phân giác góc FED
a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạg vơi ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vơi ΔABC
Cho tam giác ABC có ba góc nhọn đường cao BE và CF cắt nhau tại H a)chứng minh AExAC = AFxAB b)Chứng minh tam giác AEF đồng dạng với tam giác ABC c)AH cắt BC tại D, ED cắt FC tại I.Chứng minh HIxCF = HFxIC. giải giúp em câu c ạ em đang cần gấp. em cảm ơn.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
Cho tam giác ABC có ba góc nhọn, hai đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác BHF đồng dạng vs tam giác CHE
b) Chứng minh AF.AB = AE.AC
c) Chứng minh tam giác AEF đồng dạng tam giác ABC
d) Kẻ AH cắt BC tại I.
Chứng minh EB là tia phân giác của góc FEI
Giải
a) Xét \(\Delta BHF\) và \(\Delta CHE\) có:
\(\widehat{BHF}=\widehat{CHE}\) (vì đối đỉnh)
\(\widehat{BFH}=\widehat{CEH}=90^o\)
=> \(\Delta BHF\) \(\Delta CHE\) (g - g)
b) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{A}\) là góc chung
\(\widehat{AEB}=\widehat{AFC}=90^o\)
=> \(\Delta ABE\) \(\Delta ACF\) (g - g)
=> \(\frac{AB}{AC}=\frac{AE}{AF}\)
=> AF . AB = AE . AC
c) Xét \(\Delta AEF\) và \(\Delta ABC\) có:
\(\widehat{A}\) là góc chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (vì \(\Delta ABE\) \(\Delta ACF\))
=> \(\Delta AEF\) \(\Delta ABC\) (c - g - c)
d) Câu d mình không nghĩ ra. Bạn tự làm nha, chắc là xét tam giác đồng dạng rồi suy ra hai góc bằng nhau và sẽ suy ra đường phân giác đó.
Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau tại H. a) CM: tam giác ABE đồng dạng tam giác ACF. b) CM: góc AEF = góc ABC. c) AH cắt BC tại D, đường thẳng qua B song song với AC cắt hai tia EF, ED theo thứ tự tại M, N. CM: BM=BN