tìm các số nguyên x,y biết 1/18<x/12<y/9<1/4
tìm các số nguyên x,y biết
1/18<x/12<y/9<1/4
Lời giải:
$\frac{1}{18}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}$
$\Rightarrow \frac{2}{36}< \frac{3x}{36}< \frac{4y}{36}< \frac{9}{36}$
$\Rightarrow 2< 3x< 4y< 9$
$\Rightarrow (x,y)=(1,1), (1,2), (2,2)$
tìm các số nguyên x,y biết 1/18
tìm các số nguyên x,y biết : 1/18 < x/12 < y/9 < 1/4
tìm các số nguyên tố x và y biết x2 - 18.y2 = 1
Tìm các số nguyên x,y biết : a,-1/3<x/36<y/18<-1/4
b, -7/12<x-1/4<2/3
a: =>-12<x<2y<-9
=>x=-11; y=-5
b: =>-7<3(x-1)<8
\(\Leftrightarrow3\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
\(\Leftrightarrow x-1\in\left\{2;1;0;-1;-2\right\}\)
hay \(x\in\left\{3;2;1;0;-1\right\}\)
tìm các số nguyên x,y sao cho
a,2x+xy-3y=18
b,tìm các số nguyên x biết tích (x^2-5).(x^2-25) là sô nguyên âm
Ta có : 2x + xy - 3y = 18
=> x(y + 2) - 3y = 18
=> x(y + 2) - 3y - 6 = 18 - 6
=> x(y + 2) - 3(x + 2) = 12
=> (x - 3)(y + 2) = 12
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}x-3\inℤ\\y+2\inℤ\end{cases}}\)
Lại có : 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6)
Lập bảng xét 12 trường hợp
x - 3 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y + 2 | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | 4 | 15 | 2 | -9 | 6 | 7 | 0 | -1 | 5 | 9 | 1 | -3 |
y | 10 | -1 | -14 | -3 | 2 | 1 | -6 | -5 | 4 | 0 | -8 | -4 |
Vậy các cặp số (x;y) nguyên thỏa mãn là : (4 ; 10) ; (15 ; - 1) ; (2 ; -14) ; (-9 ; -3) ; (6 ; 2) ; (7 ; 1) ; (0 ; -6) ; (-1 ' 5) ; (5 ; 4) ; (9 ; 0) ;
(1 ; -8) ; (-3 ; -4)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
TH1 : \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\Rightarrow5< x^2< 25\Rightarrow x^2\in\left\{9;16\right\}}\)(vì x là số nguyên)
=> \(x\in\left\{\pm3;\pm4\right\}\)
TH2 : \(\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2>25\end{cases}}\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{\pm3;\pm4\right\}\)
2x + xy - 3y = 18
<=> 2x + xy - 6 - 3y = 12
<=> ( 2x + xy ) - ( 6 + 3y ) = 12
<=> x( 2 + y ) - 3( 2 + y ) = 12
<=> ( x - 3 )( 2 + y ) = 12
Lập bảng :
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 7 | -1 | 9 | -3 | 15 | -9 |
2+y | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 10 | -14 | 4 | -8 | 2 | -6 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ta có 12 cặp ( x ; y ) thỏa mãn
( 4 ; 10 ) , ( 2 ; -14 ) , ( 5 ; 4 ) , ( 1 ; -8 ) , ( 6 ; 2 ) , ( 0 ; -6 ) , ( 7 ; 1 ) , ( -1 ; -5 ) , ( 9 ; 0 ) , ( -3 ; -4 ) , ( 15 ; -1 ) , ( -9 ; -3 )
Bài 1.Tìm x,y,z: a.x/5 = -12/20 ; b.2/y = 11/-66 ; c.-3/6 = x/-2 = -18/y = -z/24
Bài 2.Tìm các số nguyên x và y biết : x<0<y và:
-2/x = y/3
Bài 3.Tìm các số nguyên x và y biết x - y = 4 và:
x-3/y-2 = 3/2
Bài 4.Viết dạng chung của tất cả các phân số bằng phân số 21/28
`-7/6=x/18`
`=>-21/18=x/18`
`=>x=-21(TM\ x in Z)`
`-7/6=-98/y`
`=>-98/84=-98/y`
`=>y=84(TM\ y in Z)`
`-7/6=-14/z`
`=>-14/12=-14/z`
`=>z=12(TM\ z in Z)`
`-7/6=t/102`
`=>-119/102=t/102`
`=>t=-119(TM\ t in Z)`
Vậy `(x,y,z,t)=(-21,84,12,-119)`
tìm các số nguyên x,y biết :
\(\frac{1}{18}< \frac{x}{12}< \frac{y}{9}< \frac{1}{4}\)