Tìm m,n thuộc Z :
a) \(\frac{5}{2.m}=\frac{1}{6}+\frac{n}{3}\)
b) \(\frac{m}{5}=\frac{3}{n}+\frac{7}{10}\)
c)\(\frac{1}{10}=\frac{m}{2}+\frac{3}{n}\)
cho \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100};N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{100}{101}\)
a/ so sánh M và N
b/ tính M nhân N
c/ CMR : M < 1 / 10
Cho M=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100}\)
N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{100}{101}\)
a, So sánh M và N
b, Tính M, N
c, CM M<\(\frac{1}{10}\)
Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
Ta có : \(\frac{1}{2}< \frac{2}{3}\); \(\frac{3}{4}< \frac{4}{5}\); \(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N
b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)
c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
a, Có \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};......;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}......\frac{99}{100}< N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
b, Hình như là M . N đó bạn:
\(M.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.....\frac{99}{100}.\frac{100}{101}=\frac{1}{101}\)
c, Vì M < N nên M.M < M.N
Mà \(\frac{1}{101}< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
Cho M =\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}vaN=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
a) Tinh tich M.N
b) chung minh M<N
c) Chung minh M < \(\frac{1}{10}\)
c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)
a) M . N = \(\left(\frac{1}{2.}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)=\frac{1.2.3.4....100}{2.3.4.5...101}=\frac{1}{101}\)
tinh nhanh
a) M= \(\frac{17}{5}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}\)
b) N= \(\frac{1}{6}.\frac{5}{9}+\frac{5}{9}.\frac{2}{7}+\frac{1}{9}.\frac{5}{7}-\frac{5}{9}.\frac{3}{7}\)
17/5×1/2×10/17×-1/8
17/10×-10/136
-170/1360
-1/8
5/54+10/63+5/63+15/63
5/54+15/63+15/63
5/54+30/63
315/3402+1620/3402
1935/3402
giúp mình với nhanh nha, mai nộp rồi!!!
1. Tính giá trị của biểu thức:
\(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)\)
biết \(m+n+p=0\)
2. Tính:
a) \(A=\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}...\frac{10^3+1}{10^3-1}\)
b) \(B=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(9^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(10^4+\frac{1}{4}\right)}\)
bài 1) Đặt \(B=\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\)
Ta có: \(A=B.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}\)
\(B.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}=\frac{m-n}{p}.\frac{p}{m-n}+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}\)
\(=1+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(=1+\frac{p}{m-n}.\left[\frac{\left(n-p\right).n}{mn}+\frac{\left(p-m\right).m}{mn}\right]=1+\frac{p}{m-n}.\frac{n^2-np+pm-m^2}{mn}\)
\(=1+\frac{p}{m-n}.\frac{\left(m-n\right).\left(p-m-n\right)}{mn}=1+\frac{p.\left(m-n\right).\left(p-m-n\right)}{\left(m-n\right).mn}=1+\frac{p.\left(p-m-n\right)}{mn}\)
\(=1+\frac{p^2-pm-pn}{mn}=1+\frac{p^2-p.\left(m+n\right)}{mn}\)
Vì m+n+p=0=>m+n=-p
\(=>B.\frac{p}{m-n}=1+\frac{p^2-p.\left(-p\right)}{mn}=1+\frac{2p^2}{mn}=1+\frac{2p^3}{mnp}\left(1\right)\)
\(B.\frac{m}{n-p}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{m}{n-p}=\frac{m-n}{p}.\frac{m}{n-p}+\frac{n-p}{m}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}\)
\(=1+\frac{m-n}{p}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}=1+\frac{m}{n-p}.\left(\frac{m-n}{p}+\frac{p-m}{n}\right)\)
\(=1+\frac{m}{n-p}.\left[\frac{\left(m-n\right).n}{np}+\frac{\left(p-m\right).p}{np}\right]=1+\frac{m}{n-p}.\frac{mn-n^2+p^2-mp}{np}\)
\(=1+\frac{m}{n-p}.\frac{\left(n-p\right).\left(m-n-p\right)}{np}=1+\frac{m.\left(n-p\right).\left(m-n-p\right)}{\left(n-p\right).np}=1+\frac{m.\left(m-n-p\right)}{np}\)
\(=1+\frac{m^2-mn-mp}{np}=1+\frac{m^2-m\left(n+p\right)}{np}=1+\frac{m^2-m.\left(-m\right)}{np}=1+\frac{2m^2}{np}=1+\frac{2m^3}{mnp}\left(2\right)\) (vì m+n+p=0=>n+p=-m)
\(B.\frac{n}{p-m}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{n}{p-m}=\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}+\frac{p-m}{n}.\frac{n}{p-m}\)
\(=1+\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}=1+\frac{n}{p-m}.\left(\frac{m-n}{p}+\frac{n-p}{m}\right)\)
\(=1+\frac{n}{p-m}.\left[\frac{\left(m-n\right).m}{pm}+\frac{\left(n-p\right).p}{pm}\right]=1+\frac{n}{p-m}.\frac{m^2-mn+np-p^2}{pm}\)
\(=1+\frac{n}{p-m}.\frac{\left(p-m\right).\left(n-p-m\right)}{pm}=1+\frac{n.\left(p-m\right).\left(n-p-m\right)}{\left(p-m\right).pm}=1+\frac{n.\left(n-p-m\right)}{pm}\)
\(=1+\frac{n^2-np-mn}{pm}=1+\frac{n^2-n\left(p+m\right)}{pm}=1+\frac{n^2-n.\left(-n\right)}{pm}=1+\frac{2n^2}{pm}=1+\frac{2n^3}{mnp}\left(3\right)\) (vì m+n+p=0=>p+m=-n)
Từ (1),(2),(3) suy ra :
\(A=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}=\left(1+\frac{2p^3}{mnp}\right)+\left(1+\frac{2m^3}{mnp}\right)+\left(1+\frac{2n^3}{mnp}\right)\)
\(=3+\frac{2p^3}{mnp}+\frac{2m^3}{mnp}+\frac{2n^3}{mnp}=3+\frac{2.\left(m^3+n^3+p^3\right)}{mnp}\)
*Tới đây để tính được m3+n3+p3,ta cần CM được bài toán phụ sau:
Đề: Cho m+n+p=0.CMR: \(m^3+n^3+p^3=3mnp\)
Từ m+n+p=0=>m+n=-p
Ta có: \(m^3+n^3+p^3=\left(m+n\right)^3-3m^2n-3mn^2+p^3=-p^3-3mn\left(m+n\right)+p^3\)
\(=-3mn\left(m+n\right)=-3mn.\left(-p\right)=3mnp\)
Vậy ta đã CM được bài toán phụ
*Trở lại bài toán chính: \(A=3+\frac{2.3mnp}{mnp}=3+\frac{6mnp}{mnp}=3+6=9\)
Vậy A=9
bài 2)
a)Nhận thấy các thừa số của A đều có dạng tổng quát sau:
\(n^3+1=n^3+1^3=\left(n+1\right)\left(n^2-n+1\right)=\left(n+1\right).\left(n^2-n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n+1\right).\left(n^2-2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n+1\right).\left[\left(n-\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]\)
\(n^3-1=n^3-1^3=\left(n-1\right)\left(n^2+n+1\right)=\left(n-1\right).\left(n^2+n+\frac{1}{4}+\frac{3}{4}\right)\)
\(=\left(n-1\right).\left(n^2+2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n-1\right).\left[\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]\)
suy ra \(\frac{n^3+1}{n^3-1}=\frac{\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]}{\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]}\)
Do đó: \(\frac{2^3+1}{2^3-1}=\frac{\left(2+1\right).\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right).\left[\left(2+0,5\right)^2+0,75\right]}=\frac{3.\left(1,5^2+0,75\right)}{1.\left(2,5^2+0,75\right)}\)
\(\frac{3^3+1}{3^3-1}=\frac{\left(3+1\right).\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right).\left[\left(3+0,5\right)^2+0,75\right]}=\frac{4.\left(2,5^2+0,75\right)}{2.\left(3,5^2+0,75\right)}\)
...........................
\(\frac{10^3+1}{10^3-1}=\frac{\left(10+1\right).\left[\left(10-0,5\right)^2+0,75\right]}{\left(10-1\right).\left[\left(10+0,5\right)^2+0,75\right]}=\frac{11.\left(9,5^2+0,75\right)}{9.\left(10,5^2+0,75\right)}\)
\(=>A=\frac{3\left(1,5^2+0,75\right).4\left(2,5^2+0,75\right)........11.\left(9,5^2+0,75\right)}{1\left(2,5^2+0,75\right).2.\left(3,5^2+0,75\right)........9\left(10,5^2+0,75\right)}=\frac{3.4........11}{1.2......9}.\frac{1,5^2+0,75}{10,5^2+0,75}\)
\(=\frac{10.11}{2}.\frac{1}{37}=\frac{2036}{37}\)
Vậy A=2036/37
b) có thể ở chỗ 1+1/4 bn nhầm,phải là \(1^4+\frac{1}{4}\) ,mà chắc cũng chẳng sao,vì 14=1 mà
Nhận thấy các thừa số của B có dạng tổng quát:
\(n^4+\frac{1}{4}=n^4+n^2+\frac{1}{4}-n^2=\left(n^2\right)^2+2.n^2.\frac{1}{2}+\frac{1}{4}-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)
\(=\left(n^2+\frac{1}{2}-n\right)\left(n^2+\frac{1}{2}+n\right)\)
\(B=\frac{\left(1^2+\frac{1}{2}-1\right).\left(1^2+\frac{1}{2}+1\right).\left(3^2+\frac{1}{2}+3\right).\left(3^2+\frac{1}{2}-3\right)..........\left(9^2+\frac{1}{2}-9\right).\left(9^2+\frac{1}{2}+9\right)}{\left(2^2+\frac{1}{2}-2\right).\left(2^2+\frac{1}{2}+2\right).\left(4^2+\frac{1}{2}-4\right).\left(4^2+\frac{1}{2}+4\right)......\left(10^2+\frac{1}{2}-10\right).\left(10^2+\frac{1}{2}+10\right)}\)
Mặt khác,ta cũng có: \(\left(a+1\right)^2-\left(a+1\right)+\frac{1}{2}=a^2+2a+1-a-1+\frac{1}{2}=a^2+a+\frac{1}{2}\)
Suy ra \(B=\frac{1^2+\frac{1}{2}-1}{10^2+\frac{1}{2}+10}=\frac{1}{221}\)
Vậy B=1/221
Bài 1Cho phân số A=\(\frac{n+3}{n-5}\)
(n∈Z).Tìm n để A nhận giá trị nguyên
Bài 2 Cho phân số A=\(\frac{2n+8}{n+1}\)
(n∈Z).Tìm các số tự nhiên n để A là số nguyên tố
Bài 3 Chứng minh rằng phân số \(\frac{5n+1}{20n+3}\)
tối giản với mọi số tự nhiên n
Bài 4 So sánh:
A= \(\frac{10^8+2}{10^8-1}\)
và B= \(\frac{10^8}{10^8-3}\)
Bài 5 Chứng minh:
a, S=\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
b, P=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+........+\frac{1}{2^{20}}< 1\)
trả lời nhanh hộ mình , mình cần gấp
Cảm ơn
Bài 1:
Vì n nguyên nên để A nhận giá trị nguyên thì :
\(n+3⋮n-5\\ \Leftrightarrow n-5+8⋮n-5\\ \Rightarrow8⋮n-5\\ \Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\\ \Rightarrow n\in\left\{4;6;3;7;1;9;-3;13\right\}\\ Vậy...\)
Bài 3;
Gọi \(UCLN_{\left(5n+1,20n+3\right)}=d\)
\(\Rightarrow\left\{{}\begin{matrix}5n+1⋮d\\20n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20n+4⋮d\\20n+3⋮d\end{matrix}\right.\\ \Rightarrow\left(20n+4\right)-\left(20n+3\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d\in\left\{-1;1\right\}\)
\(UCLN_{\left(5n+1,20n+3\right)}=1\\ \Rightarrow Phânsốđãchotốigiản\\ \RightarrowĐpcm\)
\(1.\)Để A nguyên thì n+3⋮n−5 (1)
Vì n-5⋮n-5 (2)
Từ (1) và (2) ⇒ n+3-n+5⋮n-5
⇒ 8⋮n-5
⇒ n-5 ∈ Ư(8) = \(\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
⇒ n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)
Vậy n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)thì A là số nguyên
1. Tìm tất cả các số thực x thỏa mãn
\(\left|x+\frac{1}{10}\right|+\left|x+\frac{2}{10}\right|+...+\left|x+\frac{9}{10}\right|=10x\)
2. Chứng minh rằng :
a) \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}< \frac{1}{3}\) với mọi số nguyên dương n
b)\(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}< \frac{4}{9}\) với mọi số nguyên dương n
3. Cho các số thực x,y,z thỏa mãn x+y+z = \(\frac{x}{y+z+3}=\frac{y}{z+x+2}+\frac{z}{z+y-5}\)
4. Cho các số thực dương a,b,c thỏa mãn điều kiện \(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}\) . Chứng minh rằng a=b=c
5. Cho các số thực a,b,c thỏa mãn \(\frac{a}{b+c-a}=\frac{b}{c+a-b}=\frac{c}{a+b-c}\) (giả sử các mẫu số đều khác 0). Tính giá trị biểu thức
P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
1.
\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)
\(\Rightarrow x\ge0\)
\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)
\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{2}\)
4.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)
Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)
\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)
Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)
\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)
Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)
a, \(M=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}\)
\(\Rightarrow4M=1+\frac{1}{4}+...+\frac{1}{4^{n-1}}\)
\(\Rightarrow3M=1-\frac{1}{4^n}< 1\Rightarrow M< \frac{1}{3}\left(đpcm\right)\)
b, Lập luận tương tự câu a
\(M=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^n}\)
\(\Rightarrow4M=1+\frac{1}{4}+...+\frac{1}{4^{n-1}}\)
\(\Rightarrow3M=1-\frac{1}{4^n}< 1+\frac{1}{3}=\frac{4}{3}\Rightarrow M< \frac{4}{9}\left(đpcm\right)\)
Tinh nhanh
a) M = \(\frac{17}{5}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}\)
b) N = \(\frac{1}{6}.\frac{5}{9}.\frac{5}{9}.\frac{2}{7}+\frac{1}{9}.\frac{5}{7}\)\(-\frac{5}{9}.\frac{3}{7}\)
Bài 1 : \(x+\frac{5}{6}-\frac{1}{2}=\frac{-3}{7}\) (Gía trị tuyệt đối của x + 5/6 nha mik ko biết cách viết trị tuyệt đối )
Bài 2 : Tìm m,n thuộc N biết:
a, B= \(\frac{2n+9}{n+2}-\frac{3n}{n+2}+\frac{5n+17}{n+2}\)thuộc Z
b,\(\frac{m}{5}-\frac{2}{n}=\frac{2}{15}\)
Mk sắp phải đi hc rồi, làm câu đầu thôi nha.
Bài 1:
Ta có: \(\left|x+\frac{5}{6}\right|-\frac{1}{2}=\frac{-3}{7}\)
\(\Rightarrow\left|x+\frac{5}{6}\right|=\frac{1}{14}\)
\(\Rightarrow x+\frac{5}{6}=\frac{1}{14}\) hoặc \(x+\frac{5}{6}=\frac{-1}{14}\)
Với \(x+\frac{5}{6}=\frac{1}{14}\Rightarrow x=\frac{-16}{21}\)
Với \(x+\frac{5}{6}=\frac{-1}{14}\Rightarrow x=\frac{-19}{21}\)
Vậy \(x=\frac{16}{21}\) hoặc \(x=\frac{-19}{21}\).