tính giá trị biểu thức
[2013*2014+2014*2015]*[1:1/2:1và1/2-1và 1/3
giá trị của biểu thức:(2014+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+...+1/2014+1/2015)
"ai giải được em cảm ơn nhiều"
giá trị của biểu thức A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}}\)
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
giá trị biểu thức A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}là?\)
tính giá trị biểu thức: E=\(2016^2-2015^2+2014^2-2013^2+...+2^2-1^2\)
giúp mik vs mn, thanks
\(E=\left(2016-2015\right)\left(2016+2015\right)+\left(2014-2013\right)\left(2014+2013\right)+...+\left(2-1\right)\left(2+1\right)\\ E=2016+2015+2014+2013+...+2+1\\ E=\left(2016+1\right)\left(2016+1-1\right):2\\ E=2033136\)
Giá trị biểu thức A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}\)là...
tính giá trị biểu thức sau -1 - 2 + 3 + 4 - 5 - 6 + 7 + 8 - 9 - 10 + 11 + 12-..........-2013 - 2014 + 2015 + 2016
{1/2 -1 } : {1/3-1} : { 1/4-1} : ......................: {1/99-1} : {1/100 -1}
tìm giá trị của biểu thức sau bằng cách hợp lí:
C= \(\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)
\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)
\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)
Cho A = \(\dfrac{1}{2014}\)+\(\dfrac{2}{2013}\)+\(\dfrac{3}{2012}\)+...+\(\dfrac{2013}{2}\)+2014
B = \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{2015}\)
Tính giá trị \(\dfrac{A}{B}\)
A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B
\(\Rightarrow\) \(\dfrac{A}{B}\)=2015