Tìm n để các phân số sau có giá trị nguyên
1) A= 63/3n+1
2) B= 2n+3/7
Tìm n sao cho các phân số sau có giá trị là số nguyên:
a) 12 phần 3n - 1 b) 2n + 3 phần 7 c) 2n + 5 phần n - 3
a: A nguyên
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}
b: B nguyên
=>2n+3 chia hết cho 7
=>2n+3=7k(k\(\in Z\))
=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)
c: C nguyên
=>2n+5 chia hết cho n-3
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;12;-8}
Bài 17: Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên.
a) \(\dfrac{12}{3n-1}\) . b) \(\dfrac{2n+3}{7}\) .
c) \(\dfrac{2n+5}{n-3}\) .
Mình mới học lớp 5 thôi nha
Mong bạn thông cảm
tìm số nguyên n để các p/s có giá trị nguyên
`a) (12)/(3n-1)`
`b) (2n+3)/(7)`
`c) (2n+5)/(n-3`
c) Để \(\dfrac{2n+5}{n-3}\) ∈ Z thì 2n+5⋮n-3
⇒ 2n-3+8⋮n-3
⇒ 8⋮n-3 ⇒ n-3∈Ư(8)
Ư(8)={...}
⇒n=...
\(a,\dfrac{12}{3n-1}\)
\(\Rightarrow3n-1\inƯ\left(12\right)\)
\(\Rightarrow3n\inƯ\left(12\right)=\left\{1;2;3;4;6;12;-1;-2;-3;-4-6;-12\right\}\)
\(\Rightarrow n\in\left\{\dfrac{1}{3};\dfrac{2}{3};1;\dfrac{4}{3};2;4;-\dfrac{1}{3};-\dfrac{2}{3};-1;-2;-4\right\}\)
Mà \(n\in Z\)
\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
a,Chứng tỏ rằng các phân số sau tối giản, với n là số tự nhiên: \(\frac{n-1}{3-2n}\); \(\frac{3n+7}{5n+12}\)
b,Tìm các số nguyên n để các phân số sau nhận giá trị nguyên: \(\frac{2n+5}{n-1}\); \(\frac{2n+1}{3n-2}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
Tìm các số nguyên n sao cho các phân số sau có giá trị là số nguyên:
a) 12/3n-1
b) 2n+3/7
Giúp mk mới các bạn ơi mk cần gấp lắm
a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}
b,
Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7
\(\implies\) 2n+3=7k2n+3=7k
\(\implies\) 2n=7k-3
\(\implies\) n=7k−327k−32
Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên
:))
tìm số nguyên n để các phân số sau có giá trị nguyên
A=n-5/n-3 B=2n+1/n+1
C=4n+1/3n-5 D=7n-6/3-2n
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
b) ĐKXĐ: \(n\ne-1\)
Để phân số \(B=\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(\Leftrightarrow2n+2-1⋮n+1\)
mà \(2n+2⋮n+1\)
nên \(-1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa)
Vậy: \(n\in\left\{0;-2\right\}\)
c) ĐKXĐ: \(n\ne\dfrac{5}{3}\)
Để phân số \(C=\dfrac{4n+1}{3n-5}\) là số nguyên thì \(4n+1⋮3n-5\)
\(\Leftrightarrow12n+3⋮3n-5\)
\(\Leftrightarrow12n-20+23⋮3n-5\)
mà \(12n-20⋮3n-5\)
nên \(23⋮3n-5\)
\(\Leftrightarrow3n-5\inƯ\left(23\right)\)
\(\Leftrightarrow3n-5\in\left\{1;-1;23;-23\right\}\)
\(\Leftrightarrow3n\in\left\{6;4;28;-18\right\}\)
\(\Leftrightarrow n\in\left\{2;\dfrac{4}{3};\dfrac{28}{3};-6\right\}\)
mà n nguyên
nên \(n\in\left\{2;-6\right\}\)
Vậy: \(n\in\left\{2;-6\right\}\)
tìm các số nguyên n để các phân số sau có giá trị là 1 số nguyên A. n-5/n-3 B. 2n+1/n+1
cho n thuộc z . chứng tỏ các phân số sau là phân số tối giản
A. n+7/n+6 B. 3n+2/n+1
ANH CHỊ GIẢI GIÚP EM VỚI ANH CHỊ GHI CÁC BƯỚC LÀM GIÚP EM VS Ạ EM CẢM ƠN
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản
Bài 10: Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
a) 12 phần 3n-1 b) 2n+5 phần n-3 c)3n phần n+2
giúp mik vs các bn ơi :>>>>>>
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)