Tìm x,y là số nguyên thỏa mãn: 3xy - 5 = x2 + 2y
Tìm x,y là số nguyên thỏa mãn: 3xy - 5 = x2 + 2y
Ta có:3xy-5=x\(^2\)+2y
\(\Rightarrow\)3xy-2y=x\(^2\)+5 (1)
Vì x,y là số nguyên nên:x\(^2\)+5 chia hết cho 3x-2
=>9(x^2+5) chia hết cho 3x-2
9x^2+45 chia hết cho3y-2
=>9x^2-6x+6x-4+49 chia hêt cho 3x-2
=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2
=>46 chia hết cho 3x-2
=>3x-2\(\in\)(49;-49;7;-7;1;-1)
<=>3x\(\in\)(51;-47;9;-5;3;1)
<=>x\(\in\)(1;3;17)
Thay x lần lượt vào (1) ta được y=6 hoặc y=2
Vậy y=2 hoặc y=2
Tích đúng nha!Hì hì...
Ta có:3xy-5=x2+2y
⇒3xy-2y=x2+5 (1)
Vì x,y là số nguyên nên:x2+5 chia hết cho 3x-2
=>9(x^2+5) chia hết cho 3x-2
9x^2+45 chia hết cho3y-2
=>9x^2-6x+6x-4+49 chia hêt cho 3x-2
=>3x(3x-2)+2(3x-2)+49 chia hết cho 3x-2
=>46 chia hết cho 3x-2
=>3x-2∈(49;-49;7;-7;1;-1)
<=>3x∈(51;-47;9;-5;3;1)
<=>x
Tìm các số nguyên x;y thỏa mãn: 3xy-5=x2+2y
Tìm x,y nguyên thỏa mãn 3xy - 5 = x^2 +2y
Tham khảo tại đây nhé: Tìm x, y nguyên thoả 3xy-5=x^2+2y - Tay Thu (hoc247.net)
tìm các cặp số nguyên x,y thỏa mãn x+2y=3xy+3
Bạn tham khảo nè
https://olm.vn/hoi-dap/detail/222735820244.html
Học tốt
\(x+2y=3xy+3\)
\(x-3xy+2y-3=0\)
\(y\left(2-3x\right)+x-3=0\)
\(-3y\left(2-3x\right)-3x+9=0\)
\(-3y\left(2-3x\right)+2-3x=-7\)
\(\left(2-3x\right)\left(1-3y\right)=-7\)
đến đây dễ rồi bn giải tiếp nha
tìm các số nguyên x,y thỏa mãn :
x2+3x+5=xy+2y
\(x^2+3x+5=xy+2y\\ \Leftrightarrow x^2+3x-xy-2y+5=0\\ \Leftrightarrow x\left(x+2\right)-y\left(x+2\right)+\left(x+2\right)+3=0\\ \Leftrightarrow\left(x+2\right)\left(x-y+1\right)=-3=\left(-1\right)\cdot3=\left(-3\right)\cdot1\)
\(TH_1:\left\{{}\begin{matrix}x+2=-3\\x-y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=-5\end{matrix}\right.\to\left(-5;-5\right)\\ TH_2:\left\{{}\begin{matrix}x+2=3\\x-y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\to\left(1;3\right)\\ TH_3:\left\{{}\begin{matrix}x+2=1\\x-y+1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\to\left(-1;3\right)\\ TH_4:\left\{{}\begin{matrix}x+2=-1\\x-y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\end{matrix}\right.\to\left(-3;-5\right)\)
Vậy \(\left(x;y\right)=\left(-5;-5\right);\left(1;3\right);\left(-1;3\right);\left(-3;-5\right)\)
tìm x;y nguyên thỏa mãn:
3xy-5=x2+2y
Ta có \(3xy-5=x^2+2y\)
\(\Rightarrow3xy-2y=x^2+5\)
\(\Rightarrow y\left(3x-2\right)=x^2+5\)(1)
Vì x , y nguyên nên \(x^2+5\) chia hết cho \(3x-2\)
\(\Rightarrow9\left(x^2+5\right)\) chia hết cho \(3x-2\)
\(\Rightarrow9x^2+45\) chia hết cho \(3x-2\)
\(\Rightarrow9x^2-6x+6x-4+49\) chia hết cho \(3x-2\)
\(\Rightarrow3x\left(3x-2\right)+2\left(3x-2\right)+49\) chia hết cho \(3x-2\)
\(\Rightarrow49\) chia hết cho \(3x-2\)
\(\left(3x-2\right)\in\text{Ư(49)=}\left(49;-49;7;-7;1;-1\right)\)
\(\Rightarrow3x\in\text{ }\left(51;-47;9;-5;3;1\right)\)
\(\Rightarrow x\in\text{ }\left(17;-\frac{47}{3};3;-\frac{5}{3};1;\frac{1}{3}\right)\)
Mà x nguyên
\(\Rightarrow x\in\left(17;3;1\right)\)
Thay lần lượt vào (1) ta được y=2 ; y=6
Vậy cặp số nguyên (x,y) cần tìm ...
thanh kill ???????????????????????????????????????????????????????????????!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tìm các cặp số nguyên (x,y) thỏa mãn: x+2y = 3xy+3
Viết lại các câu sau cho nghĩa không đổi
1. My room is smaller than your room.
Your room is bigger than my room.
2. No house on the street is older than this house.
This house isthe oldest on the street.
3. Quang is 1.75 meters tall. Vinh is 1.65 tall.
Vinh is shorter than Quang
4. Hang is the fattest girl in my class.
No girl in my class is fatter than Hang
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
là số nguyên tố
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp