\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{^{6x}}\)
Tìm x,y
Tìm x , biết: \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Tìm x biết rằng \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Ta có: 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=> y=1/4
thay y=1/4 vào đề ta có:
(1+ 1/2)/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=> 12(5/2)=6x
=>30=6x
=>x=5
Vậy x=5
y=1/4
Tìm x, y, z biết: \(\frac{1+4y}{18}=\frac{1+5y}{24}=\frac{1+6y}{6x}\)
\(\frac{1+4y}{18}=\frac{1+5y}{24}\Rightarrow24+96y=18+90y\)
\(\Rightarrow6+6y=0\Leftrightarrow6\left(1+y\right)=0\)Vậy y = -1
Thay y = -1 ta có :
\(\frac{1-5}{24}=\frac{1-6}{6x}\Leftrightarrow\frac{-5}{30}=-\frac{5}{6x}\left(\frac{-4}{24}=-\frac{5}{30}=\frac{1-5}{24}\right)\)
Vậy 6x = 30 hay x = 5
Tìm x, y biết
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Ta có: 1 + 2y/18 = 2.(1+2y)/2.18 = 2+4y/36
Sử dụng tc dãy tỉ số bằng nhau ta có:
2+4y/36 = 1+4y/24 = 2+4y-1-4y/36-24 = 1/12
Do 1+2y/18 = 1/12=> y = 1/4
1+6y/6x = 1/12=> x = 5
Vậy x = 5; y = 1/4
tìm x,y biết
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{8y+2}{18+6x}\)
suy ra
\(\frac{1+4y}{24}=\frac{8y+2}{18+6x}=\frac{2\left(1+4y\right)}{2\left(9+3x\right)}=\frac{1+4y}{9+3x}\)
=>9+3x=24
3x=24-9
3x=15
x=15:3
x=5
TK CHO MÌNH NHA
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
tim x va y.
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{1+2y}{18}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{2+8y}{18+6x}=\frac{2.1+4y}{2.9+3x}=\frac{1+4y}{9+3x}\)
\(\Rightarrow\frac{1+4y}{9+3x}=\frac{1+4y}{24}\Rightarrow9+3x=24\)
\(3x=15\)
Vậy: \(x=5\)
Tìm x,y biết:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Ta có:
\(\frac{1+2y}{18}=\frac{1+4y}{24}\)
\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)
\(\Rightarrow24+48y=18+72y\)
\(\Rightarrow24-18=72y-48y\)
\(\Rightarrow24y=6\)
\(\Rightarrow y=6:24=\frac{1}{4}\)
Thay \(y=\frac{1}{4}\) vào đề bài ta có:
\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)
\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)
\(\Rightarrow\frac{\frac{3}{2}}{18}=\frac{\frac{5}{2}}{6x}\)
=> \(\frac{3}{2}.6x=\frac{5}{2}.18\)
\(\Rightarrow9x=45\)
\(\Rightarrow x=45:9=5\)
Vậy \(x=5;y=\frac{1}{4}\)
tìm x,y biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
ĐK: x#0
Ta có:
(1) 1+2y/18 = 1+4y/24
=> 24 + 48y = 18 + 72y
<=> y=1/4
(2) 1+4y/24=1+6y/6x
Thay y=1/4 vào (2) ta tìm đc x=5 (TMĐK)
Theo đề bài, ta có;
\(\frac{1+2y}{18}=\frac{1+4y}{24}\)
\(\Rightarrow24\times\left(1+2y\right)=18\times\left(1+4y\right)\)
\(\Rightarrow24+48y=18+72y\)
\(\Rightarrow48y-72y=18-24\)
\(\Rightarrow-24y=-6\)
\(\Rightarrow y=\frac{-6}{-24}\)
\(\Rightarrow y=\frac{1}{4}\)
Với \(y=\frac{1}{4}\), ta có:
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\) \(\left(x\ne0\right)\)
\(\Rightarrow\frac{1+4\times\frac{1}{4}}{24}=\frac{1+6\times\frac{1}{4}}{6x}\)
\(\Rightarrow\frac{1+1}{24}=\frac{1+\frac{3}{2}}{6x}\)
\(\Rightarrow\frac{2}{24}=\frac{\frac{5}{2}}{6x}\)
\(\Rightarrow\frac{1}{12}=\frac{\frac{5}{2}}{6x}\)
\(\Rightarrow6x=\frac{5}{2}\div\frac{1}{12}\)
\(\Rightarrow6x=\frac{5}{2}\times12\)
\(\Rightarrow6x=30\)
\(\Rightarrow x=30\div6\)
\(\Rightarrow x=5\)
Vậy \(x=5\) và \(y=\frac{1}{4}\) thì thỏa mãn đề bài.
Tìm x,y biết :
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Áp dụng tính chất dãy số bằng nhau ta có:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{2y+8y}{18+6x}=\frac{2.\left(1+4y\right)}{2.\left(9+3x\right)}=\frac{1+4y}{9+3x}\)
\(\Rightarrow\frac{1+4y}{9+3x}=\frac{1+4y}{24}\Rightarrow9+3x=24\)
\(3x=15\)
\(x=15\)