Giải phương trình
\(x^5-27+x^3-27x^2=0\)
Giải hệ phương trình
\(\hept{\begin{cases}x^3-9z^2+27z-27=0\\y^3-9x^2+27x-27=0\\z^3-9y^2+27y-27=0\end{cases}}\)
Hệ phương trình
\(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^3=0\\\left(y-3\right)^3=0\\\left(z-3\right)^3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\\z=3\end{cases}}}\)
\(hpt=>\hept{\begin{cases}x^3+y^3-9y^2+27y-27=y^3.\\y^3+z^3-9z^2-27x-27=z^3.\\z^3+x^3-9y^2-27y-27=x^3.\end{cases}}\)
\(=>\hept{\begin{cases}x^3=y^3-\left(y-3\right)^3\\y^3=z^3-\left(z-3\right)^3\\z^3=x^3-\left(x-3\right)^3\end{cases}}\)
Do vai trong của x, y , z như nhau nên ta giả sử x=max{x,y,z}
Do giả sử ta có
\(=>\hept{\begin{cases}x^3\ge z^3\\-\left(y-3\right)^3\ge\left(x-y\right)^3\end{cases}}\)
=>\(\hept{\begin{cases}y^3-\left(y-3\right)^3\ge x^3-\left(x-3\right)^3\\-\left(y-3\right)^3\ge-\left(x-3\right)^3\end{cases}}\)
=>\(y^3\ge x^3=>y\ge x\)
Từ đây , ta suy ra x=y=z
Thay zô 1 pt bất kì tao tìm được x=y=z=3
Vậy nghiệm duy nhất của hệ phương trình là x=y=z=3
Giải hệ phương trình :
\(\int^{x^3-9y^2+27y-27=0}_{\int^{y^3-9z^2+27z-27=0}_{z^3-9x^2+27x-27=0}}\)
ĐÂY LÀ HỆ 3 ẨN 3 PHƯƠNG TRÌNH. CÁC BẠN CHÚ Ý NHÉ!
\(hpt\Leftrightarrow\int^{x^3=9y^2-27y+27\left(1\right)}_{\int^{y^3=9z^2-27z+27}_{z^3=9x^2-27x+27}}\)
Vì vai trò x ; y; z bình đẳng trong hệ ta g/s \(x\le y\le z\) (I)
Với \(x\le y\Rightarrow9x^2-27x+27\le9y^2-27y+27\Leftrightarrow z^3\le x^3\Leftrightarrow z\le x\) ( II )
\(x\le z\Rightarrow9x^2-27x+27\le9z^2-27z+27\Leftrightarrow z^3\le y^3\Leftrightarrow z\le y\) ( III )
Từ (I) ; ( II ) ; (III ) => x = y =z
Thay x = y vào pt (1) giải ra nghiệm
bài này mình cộng 3 hệ lại cuối cùng được ntn:
\(\left(x-3\right)^3+\left(y-3\right)^3+\left(z-3\right)^3=0\)
đến đây chả biết làm tn :3 ko nhớ HĐT \(A^3+B^3+C^3\) bằng gì nữa @@
giải các phương trình sau :
1, x^3 - 7x + 6 = 0
2, x^3 - 6x^2 - x + 30 = 0
3, x^3- 9x^2+ 6x+16=0
4,2^3 - x^2 + 5x +3 = 0
5, 27x^3- 27x^2+ 18x = 44
1/ \(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x+3=0\)
hoặc \(x-1=0\)
hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=-3\)
hoặc \(x=1\)
hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;1;-2\right\}\)
2/ \(x^3-6x^2-x+30\)
\(\Leftrightarrow x^3+2x^2-8x^2-16x+15x+30=0\)
\(\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+15\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x-5x+15\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x-3=0\)
hoặc \(x-5=0\)
\(\Leftrightarrow\)\(x=-2\)
hoặc \(x=3\)
hoặc \(x=5\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-2;3;5\right\}\)
3/ \(x^3-9x^2+6x+16=0\)
\(\Leftrightarrow x^3+x^2-10x^2-10x+16x+16=0\)
\(\Leftrightarrow x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-10x+16\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-8x-2x+16\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-8\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-8=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=-1\)
hoặc \(x=8\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-1;8;2\right\}\)
4/ Đề bài sai ! Sửa lại nhé :
\(2x^3-x^2+5x+3=0\)
\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)
\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2-x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2}\right\}\)
Giải phương trình:
a) \(x^5-27+x^3-27x^2=0\)
b) \(x^3-9x^2+19x-11=0\)
a) \(x^5-27+x^3-27x^2\) = 0
\(\Leftrightarrow x^3\left(x^2+1\right)-27\left(x^2+1\right)\)= 0
\(\Leftrightarrow\left(x^2+1\right)\left(x^3-27\right)=0\)
\(\Leftrightarrow x^3-27=0\) (Vì \(x^2+1>0\))
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+2\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{27}{4}\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}\right]=0\)
\(\Leftrightarrow x-3=0\) (Vì \(\left(x+\dfrac{3}{2}\right)^2+\dfrac{27}{4}>0\))
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình là S = {3}
b)\(x^3-9x^2+19x-11=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(8x^2-8x\right)+\left(11x-11\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-8x+11\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-\left(4+\sqrt{5}\right)x-\left(4-\sqrt{5}\right)x+11\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left\{x\left[x-\left(4+\sqrt{5}\right)\right]-\left(4-\sqrt{5}\right)\left[x-\left(4+\sqrt{5}\right)\right]\right\}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-4-\sqrt{5}\right)\left(x-4+\sqrt{5}\right)=0\)
\(\Leftrightarrow x-1=0\) hoặc \(x-4-\sqrt{5}=0\) hoặc \(x-4+\sqrt{5}=0\)
\(\Leftrightarrow x=1\) hoặc \(x=4+\sqrt{5}\) hoặc \(x=4-\sqrt{5}\)
Vậy phương trình có tập nghiệm là \(S=\left\{1;4+\sqrt{5};4-\sqrt{5}\right\}\)
Giải phương trình giúp em ạ 27x^2(x+3)-12(x^2+3x)=0
giải hệ phương trình \(\left\{{}\begin{matrix}y^3-9x^2+27x-27=0\\z^3-9y^2+27y-27=0\\x^3-9z^2+27z-27=0\end{matrix}\right.\)
Giải phương trình ( có câu vô nghiệm)
a, x^2 + 4y^2 + 4xy =0
b,2y^4 - 9y^3+ 2y^2 - 9y=0
c,27x^3 - 27x^y + 3xy^2-y^3=0
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
Giải hệ phương trình : x3-9z2+27z-27=0
y3-9x2+27x-27=0
z3-9y2+27y-27=0
giải phương trình \(x^4-9x^3+24x^2-27x+9=0\)
nhận thấy x = 0 không là nghiệm của phương trình
Chia 2 vế phương trình cho x2, ta được :
\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\) ( 1 )
đặt \(t=x+\frac{3}{x}\)
( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)
\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)
Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)