Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành Đạt
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Phùng Minh Quân
6 tháng 10 2019 lúc 9:05

\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)

Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

Nyatmax
6 tháng 10 2019 lúc 9:33

Cach khac

Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)

Ta co:

\(a+b+c=abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(\Rightarrow xy+yz+zx=1\)

\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

Ta lai co:

\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)

Tuong tu:

\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)

\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

\(\Rightarrow a=b=c=\sqrt{3}\) 

Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)

Lê Quốc Vương
Xem chi tiết
dia fic
Xem chi tiết
Lê Song Phương
Xem chi tiết
Nguyễn
Xem chi tiết

Ta có : \(P=a+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Mặt khác \(\frac{x}{y}+\frac{y}{x}\ge2\)Với mọi \(x,y\)dương \(\Rightarrow P=3+2+2+2=9\)

Vậy \(Pmir=9\)khi \(a=b=c\)

erza
Xem chi tiết
đôrêmon0000thếkỉ
25 tháng 8 2017 lúc 14:32

fewqfjkewqf

erza
25 tháng 8 2017 lúc 14:35

Các bạn ơi giải giúp mink vs mink đg cần gấp

Ngoa Long Truong Dinh
15 tháng 7 2018 lúc 10:24

nhiều thế ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

Phong
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 12:04

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

Nguyễn Đức Trí
15 tháng 9 2023 lúc 12:20

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài

Kỳ Tú Bùi
Xem chi tiết
Wall HaiAnh
23 tháng 4 2018 lúc 21:20

Trả lời

a+b+c=abc (1)

Vì a,b,c có vai trò như nhau

Giả sử \(a\le b\le c\)

\(\Rightarrow a+b+c\le3c\)

\(\Rightarrow a+b\le3\)( nếu \(c\ne0\))

\(\Rightarrow\orbr{\begin{cases}a\ne1;b=2\\a=1;b=3\end{cases}}\)

- Nếu a=1; b=2

=> c=3 (Chọn)

- Nếu a=1; b=3

=>c=2 (loại)

Vậy (a;b;c)\(\in\left\{\left(1;2;3\right);\left(1;3;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(3;1;2\right);\left(3;2;1\right)\right\}\)

Kỳ Tú Bùi
23 tháng 4 2018 lúc 21:24

có gì đó sai sai

Kỳ Tú Bùi
23 tháng 4 2018 lúc 21:31

sai rồi mik nhầm