\(Cho:a=-\sqrt{2}-1;b=\frac{1}{\sqrt{2}+1}\)
Tính : \(S=a^9+b^9\)
* Cho:
A= \(\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right).\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
CMR: A là số nguyên
\(A=\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
\(=\dfrac{5+2\sqrt{6}-5+2\sqrt{6}}{-1}\cdot\dfrac{1}{\sqrt{6}}\)
=-4
* Cho:
A=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\), với x>0 và x≠1
a. Rút gọn A
b. Tìm giá trị nhỏ nhất của A
a: Ta có: \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Lời giải:
a.
\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)
\(=\sqrt{x}(\sqrt{x}-1)-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)
\(=x-\sqrt{x}+1\)
b.
\(A=x-\sqrt{x}+1=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy $A_{\min}=\frac{3}{4}$ khi $\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$
\(Cho:A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(1,\)Rút gọn biểu thức A
\(2,\)Tìm GTLN của A
\(3,\)Tìm \(x\in Q\) để A nhận giá trị nguyên
1:
\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
3: A nguyên
=>-5căn x-15+17 chia hết cho căn x+3
=>căn x+3 thuộc Ư(17)
=>căn x+3=17
=>x=196
\(Cho:a,b>0\text{thỏa mãn}\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}.CMR:\sqrt{a+b}=\sqrt{a-2018}-\sqrt{b-2018}\)
\(2018\left(a+b\right)=ab\)
Tpcm: \(\sqrt{a+b}=\sqrt{a-2018}-\sqrt{b-2018}\)
\(\Leftrightarrow2018=-\sqrt{ab-2018\left(a+b\right)+2018^2}\)với a>b
\(\Rightarrow2018=-2018\)(vô lý)
=> Đề bì có vấn đề?
\(cho:a;b\ge0.CMR:\)
\(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
*)\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\) (luôn đúng)
*)\(\sqrt{2\left(a+b\right)}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng, too)
*)\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow2\sqrt{ab}\ge0\) (luôn đúng)
*)\(\sqrt{2\left(a+b\right)}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng, too)
\(Cho:A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\left(x\ge0;x\ne9\right)\)) Tìm số nguyên x để A là một số nguyên
\(a,cho:a\ge6.tìmMin:a^2+\frac{18}{\sqrt{a}}\)
\(b,0\le a\le\frac{1}{2}.tìmMin:2a+\frac{1}{a^2}\)
Cho hàm số y=-x3+3m2x2+1 với m là tham số thực. Tìm m để hàm số có CĐ, CT sao cho:
a) đường thẳng qua CĐ, CT vuông góc với đường thẳng d: 2x+y+1=0
b) AB=\(2\sqrt{5}\) với A, B là tọa độ các điểm cực trị