Cho hàm số y=x3-3x2-mx+2. Tìm m để hàm số có CĐ, CT và đường thẳng qua CĐ, CT tạo với hai trục tọa độ một tam giác vuông cân
Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2-x+m+1\). Tìm m để hàm số có CĐ, CT sao cho khoảng cách giữa hai điểm CĐ, CT nhỏ nhất
Cho hàm số y=x3-3mx2+3.(m2-1)x-m3+4m-1. Tìm m để hàm số có CĐ, CT tại 2 điểm A, B và tam giác OAB vuông tại O (gợi ý \(\overrightarrow{OA}.\overrightarrow{OB}=0\) )
Tìm m để hàm số y = \(\dfrac{-1}{3}x^{3} -2x^{2}+mx+3 \) có hai điểm cực trị A và B thỏa mãn
a) Đường thằng AB có hệ số góc k=2
b) Đường thẳng AB song song với đường thằng x+y-1=0
c) Đường thẳng AB vuông góc với đường thằng 3x+2y-3=0
Tìm các giá trị của tham số m để các hàm số co CĐ,CT
1. y=x^3-6x^2+3mx-2
2. y=mx^3-2mx^2+3x-1
Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành
Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\) cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)
Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung
Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)
(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung
Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O
Cho hàm số \(y=x^4-2m\left(m+1\right)x^2+m^2\) với m là tham số thực.
a) Tìm m để đồ thị hàm số trên có 3 cực trị tạo thành 3 đỉnh của tâm giác vuông
b) Tìm m để đồ thị hàm số trên có 3 cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại
Cho hàm số \(y=x^3-3x^2+m^2x+m\). Tìm tất cả các giá trị của tham số m để hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng d:\(y=\frac{1}{2}x-\frac{5}{2}\)
Tìm tất cả các giá trị thực của tham số \(m\) để khoảng cách từ điểm \(M\left(0;3\right)\) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=x^3+3mx+1\) bằng \(\dfrac{2}{\sqrt{5}}\)