Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Như Ngày Hôm Qua
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Nguyễn Linh Chi
7 tháng 1 2020 lúc 22:49

A B C D H A' x x/2

Kẻ đường cao AH ; Vì \(\Delta\)ABC cân 

=> H là trung điểm BC  

Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)

=> ^ABH = ^ACH = 30\(^o\)

=> ^BAH = 60 \(^o\)

Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'

=> \(\Delta\)ABA' cân tại B mà  ^BAA' = ^BAH = 60\(^o\)

=> \(\Delta\)ABA'  đều .

Đặt: AB = x => AA' = x => AH = x/2

+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)\(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)

=> \(BH=\frac{\sqrt{3}x}{2}\)

=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)

( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))

=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)

+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH  = 30 \(^o\)=> ^ADB = 60\(^o\)

=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\) 

Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)

=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)

+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)

=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)

=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)

=> \(BD=BC-DC=6-2=4cm\)

Khách vãng lai đã xóa
Lê Thu Trang
Xem chi tiết
Nguyễn Linh Chi
11 tháng 4 2019 lúc 13:12

A B C E F

Xét tam giác ABC cân tại A có đường cao AH 

=> AH là đường phân giác 

=>  \(\widehat{BAH}=\widehat{CAH}\)(1)

Ta có:  \(\widehat{EAB}=\widehat{FAC}=90^o\)(2)

Mặt khác:  \(\widehat{OAH}=\widehat{OAE}+\widehat{EAB}+\widehat{BAH}=\widehat{OAF}+\widehat{FAC}+\widehat{CAH}\)(3)

Từ (1), (2), (3) => \(\widehat{OAE}=\widehat{OAF}\)

Ta lại có Tam giác EAB cân tại A, BAC cân tại A, CAF cân tại A

=> AE=AB=AC=AF

Xét tam giác EOA và tam giác FOA có:

AF=AE

\(\widehat{OAE}=\widehat{OAF}\)

OA chung

=> \(\Delta EOA=\Delta FOA\)

=> OE=OF

Phạm Tuyết Vy
Xem chi tiết
Yein
Xem chi tiết
Edogawa Conan
13 tháng 3 2020 lúc 9:34

A B C H 7 cm 2 cm 2 cm

Ta có: AC = AH + HC = 7 + 2 = 9 (cm)

 Vì AB = AC => AB = 9 cm

Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:

AB2 = AH2 + BH2

=> BH2 = AB2 - AH2 = 92 - 72 = 32

Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:

 BC2 = BH2 + HC2 = 32 + 22 = 36

=> BC = 6 (cm)

Khách vãng lai đã xóa
LINKER Sad
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2023 lúc 0:04

a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có

BA=CA

góc B=góc C

=>ΔBAM=ΔCAN

b: ΔBAM=ΔCAN

=>AM=AN

góc MAB=90 độ

góc B=30 độ

=>góc AMN=60 độ

=>ΔAMN đều

góc NAB=120-90=30 độ=góc B

=>ΔNAB cân tại N

góc MAC=120-90=30 độ=góc C

=>ΔMAC cân tại M

Phan van anh
Xem chi tiết
Nguyễn Phương Uyên
28 tháng 2 2020 lúc 11:43

b1 : 

DE // AB

=> góc ABC  = góc DEC (đồng vị)

 góc ABC = góc ACB do tam giác ABC cân tại A (gt)

=> góc DEC = góc ACB 

=> tam giác DEC cân tại D (dh)

b2:

a, tam giác ABC => góc A + góc B  + góc C = 180 (đl)

góc A = 80; góc B  = 50

=> góc C = 50

=> góc B = góc C

=> tam giác ABC cân tại A (dh)

b, DE // BC

=> góc EDA = góc ABC (slt)

     góc DEA = góc ECB (dlt)

góc ABC = góc ACB (Câu a)

=> góc EDA = góc DEA 

=> tam giác DEA cân tại A (dh)

Khách vãng lai đã xóa
Sóii Trắngg
Xem chi tiết
Minz Ank
Xem chi tiết
Thanh Hoàng Thanh
6 tháng 12 2021 lúc 10:13

Kẻ  AH \(\perp\) BC.

Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).

=> AH là trung tuyến (Tính chất các đường trong tam giác cân).

=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.

Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.

Mà ^BAD = 36o (gt).

=> ^ABC = ^BAD = 36o.

Mà 2 góc này ở vị trí so le trong.

=> AD // BC (dhnb).

Mà AH \(\perp\) BC (cách vẽ).

=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.

Kẻ MH // DB; M \(\in\) AD. 

Xét tứ giác DMHB có: 

+ MH // DB (cách vẽ).

+ MD // HB (do AD // BC).

=> Tứ giác DMHB là hình bình hành (dhnb). 

=> MH = DB và MD = BH (Tính chất hình bình hành).

Ta có: AD = MD + AM.

Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).

=> AM = b - \(\dfrac{1}{2}\)a.

Xét tam giác AHB vuông tại H có:

AB2 = AH+ BH2 (Định lý Py ta go).

Thay: b2 = AH+ ( \(\dfrac{1}{2}\)a)2.

<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.

<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).

Xét tam giác MAH vuông tại A (^MAH = 90o) có:

\(MH^2=AM^2+AH^2\) (Định lý Py ta go).

Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.

 MH2 = b2  - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.

MH2 = 2b2 - ab.

MH = \(\sqrt{2b^2-ab}\).

Mà MH = BD (cmt).

=> BD = \(\sqrt{2b^2-ab}\).

Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.

 

 

HUN PEK
Xem chi tiết