Tìm a,b biết a + b= 42 và BCNN(a; b)= 72
tìm a,b biết a+b=42 và BCNN(a,b)=72
Ta thấy \(72=2^3.3^2\) nên a, b có dạng \(\left\{{}\begin{matrix}a=2^x3^y\\b=2^z.3^t\end{matrix}\right.\) với \(x,y,z,t\inℕ\) và \(max\left\{x,z\right\}=3;max\left\{y,t\right\}=2\).
Theo đề bài, ta có \(2^x.3^y+2^z.3^t=42\)
\(\Leftrightarrow2^{x-1}.3^{y-1}+2^{z-1}3^{t-1}=7\) (*), do đó \(x,y,z,t\ge1\)
TH1: \(x\ge z,y\le t\). Khi đó \(x=3,t=2\). (*) thành:
\(4.3^{y-1}+3.2^{z-1}=7\) \(\Leftrightarrow y=z=1\)
Vậy \(\left\{{}\begin{matrix}a=24\\b=18\end{matrix}\right.\) (nhận)
TH2: KMTQ thì giả sử \(x\ge z,y\ge t\). Khi đó \(x=3,z=2\). (*) thành
\(4.3^{y-1}+2.3^{t-1}=7\), điều này là vô lí.
Vậy \(\left(a,b\right)=\left(24,18\right)\) hay \(\left(18,24\right)\) là cặp số duy nhất thỏa yêu cầu bài toán.
Tìm a,b biết a b=42 và BCNN(a,b)=72
tìm a,b biết 0<a<b, a+b=42 và BCNN(a,b)=114
Lời giải:
Gọi $ƯCLN(a,b)=d$ thì đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $0< x< y$, $x,y$ nguyên tố cùng nhau,
Ta có:
$a+b=dx+dy=d(x+y)=42$
$BCNN(a,b)=dxy=114$
$\Rightarrow d=ƯC(42,114)$
$\Rightarrow ƯCLN(42,114)\vdots d$
$\Rightarrow 6\vdots d$
Nếu $d=1$ thì: $x+y=42; xy=114$
$xy=114=2.3.19$. Mà $x<y$ và $x,y$ nguyên tố cùng nhau nên $(x,y)=(2,57), (6,19), (3,38), (1,114)$
Mà $x+y=42$ nên $x=3, y=38$
$\Rightarrow a=dx=x=3; b=dy=y=38$
Nếu $d=2$ thì: $x+y=21; xy=57$
$xy=57=3.19$. Mà $x<y$ và $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,57), (3,19)$
Mà $x+y=21$ nên không có cặp x,y nào thỏa mãn
Nếu $d=3$ thì: $x+y=14; xy=38$
$xy=38=2.19$ mà $x<y, ƯCLN(x,y)=1$ nên $(x,y)=(1,38), (2,19)$
Mà $x+y=14$ nên không có giá trị nào thỏa mãn
Nếu $d=6$ thì: $x+y=7; xy=19$
$\Rightarrow x=1; y=19$ (loại do $x+y=7$)
Vậy $x=3; y=38$
tìm a,b biết a+b =42 và BCNN(a,b)=72
do 72=2^3.3^2.23.32
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
Tìm a,b biết a+b=42 và BCNN(a,b)=72
Tìm 2 STN a và b biết a+b = 42 và BCNN (a,b)=72
<br class="Apple-interchange-newline"><div id="inner-editor"></div>23.32
nên ít nhất trong 2 số a, b có một số chia hết cho 2
giả sử a chia hết cho 2 => b=42-a cũng chia hết cho 2
=> a và b đều chia hết cho 2.
tương tự ta cũng có a và b chia hết cho 3
=> a và b đều chia hết cho 6.
dễ thấy 42=36+6=30+12=18+24 (tổng 2 số chia hết cho 6)
trong 3 tổng trên chỉ có cặp 18 và 24 là thỏa mãn.
=> a=18 và b=24
Chứng minh : A = 5 + 5 mũ 2 + 5 mũ 3 + . . . + 5 mũ 9+ 5 mũ 10 chia hết cho 6 giúp mk với nha
1) tìm a,b biết a+b=42 và BCNN(a,b)=72
Ta có:
72=32∗23
mà a,b là các số tự nhiên
=>a,b <42
Do 72 là BCNN
=>a = 9k(k<5)
b=8q(q<6)
=>a=18 và b=24
vậy tập nghiệm cua phương trình là
(a,b) =(24;18) và các hoán vị của nó
ta có
72=32∗23
mà a,b là các số tự nhiên
a,b <42
Do 72 là BCNN
a = 9k(k<5)
b=8q(q<6)
a=18 và b=24
vậy tập nghiệm cua phương trình là
(a,b) =(24;18) và các hoán vị của nó
Tìm a, b biết a + b = 42 và BCNN(a,b)=72
Ta có: \(72=2^3.3^2\)
\(\Rightarrow\) Trong 2 số a, b có một số chia hết cho 2
Giả sử a chia hết cho 2
\(b=\left(42-a\right)\) ⋮ \(2\)
\(\Rightarrow\) a và b ⋮ 2
Tương tự ta cũng có a và b ⋮ 3
\(\Rightarrow\) a và b ⋮ 6
Dễ thấy \(42=36+6=30+12=18+24\) (VÌ tổng 2 số ⋮ 6)
Mà trong ba tổng trên chỉ có \(18+24\) thỏa mãn
\(\Rightarrow a=18;b=24\)
tìm 2 số tự nhiên a, b biết rằng
a) a+b=42 và BCNN(a,b)=72
b)a-b=72 và BCNN(a,b)=100
a,
Ta có: 72 = 2 3 . 3 2 => Trong hai số có ít nhất 1 số chia hết cho 2
Giả sử a ⋮ 2 => b = (42 – a) ⋮ 2 (1)
Lập luận tương tự, ta có a ⋮ 3; b ⋮ 3 (2)
Từ (1), (2) => a ⋮ 6; b ⋮ 6
Ta có: 42 = 6+36 = 12+30 = 18+24
Trong các cặp trên chỉ có duy nhất (a;b) ∈ {(18;24),(24;18)} thỏa mãn đề bài