Cho a và b là hai số nguyên dương, ƯCLN(a;b) = 1 và a + b là số chẵn. Chứng minh rằng P = a.b.(a-b).(a+b) chia hết cho 24
Cho a và b là hai số nguyên dương và không chia hết cho nhau. Biết BCNN(a,b) = 630 và ƯCLN(a,b) = 18. Tìm hai số a và b
ta có: a . b = ƯCLN ( a , b ) ; BCNN ( a , b )
theo bài ra ta được:
a . b = 630 . 18
a . b = 11340
vì a . b = 11340 \(\Rightarrow\)a , b \(\in\)Ư ( 11340 ) = { 1; 2; 3; 4; 5; 6; 7; 9; 10; 12; 14; 15; 18; 20; 21; 27; 28; 30; ...; 11340 }
TH1 : a = 1 thì b = 11340
TH2 : a = 2 thì b = 5670
TH3 : a = 3 thì b = 3780
TH4 : a = 4 thì b = 2835
TH5 : a = 5 thì b = 2268
...
TH cuối : a = 11340 thì b = 1
Vậy a = 1, b = 11340
a = 2 , b = 5670
....
a = 11340 , b = 1
cho a và b là hai số nguyên dương, ƯCLN (a,b)=1 và a+ b là số chẵn. Chứng minh rằng P=ab(a-b)(a+b) chia hết cho 24
Ta có: a + b chẵn và a,b nguyên tố cùng nhau nên a,b là hai số lẻ
*chứng minh P chia hết cho 8
Ta có (a + b) = 2k
a - b = a + b - 2b = 2k - 2b = 2(k - b)
Với k là số chẵn thì (a + b) chia hết cho 4, (a - b) chia hết cho 2
=> P chia hết cho 8
Với k là số lẻ thì (a + b) chia hết cho 2, (a - b) chia hết cho 4
=> P chia hết cho 8
Vậy ta có P chia hết cho 8 (1)
*Chứng minh P chia hết cho 3
Vì cả a, b đều là số lẻ nên a,b chia cho 3 dư 0 hoặc dư 1
Với 1 trong 2 số a,b chia hết cho 3 thì P chia hết cho 3
Với a,b chia cho 3 dư 1 thì (a - b) chia hết cho 3
Vậy P chia hết cho 3
Từ (1) và (2) kết hợp với việc 3 và 8 là hai số nguyên tố cùng nhau thì ta => P chia hết cho 24
alibaba nguyễn: Khi chứng minh P chia hết cho 3
a; b lẻ vx có thể chia 3 dư 2 chứ; vd như 5; 17; 29; ... chẳng hạn
t nghĩ lm thế này: Câu hỏi của letienluc - Toán lớp 6 | Học trực tuyến
Bổ xung phần bạn Tiểu góp ý.
Với a,b cùng chia cho 3 dư 2 thì (a - b) chia hết cho 3
Với a chia 3 dư 2,b chia 3 dư 1( hoặc ngược lại) thì (a + b) = 3m + 1 + 3n + 2 = 3m + 3n + 3 chia hết cho 3
Cho a và b là 2 số nguyên dương; gọi S=a+b và M=BCNN(a;b)
a, Chứng minh tằng ƯCLN(a;b)=ƯCLN(S;M)
b, Tìm hai số a và b biết S=26 và M=84
tìm hai số nguyên dương a và b biết a.b=216 và ƯCLN (a,b)=6
tìm số tự nhiên a và b biết a+b=128 và ƯCLN( a,b)=16
Tham khảo:
1. Câu hỏi của Nghĩa Nguyễn Trọng - Toán lớp 6 - Học trực tuyến OLM
2. Câu hỏi của nguyen thuy linh - Toán lớp 6 - Học trực tuyến OLM
a) Tìm chữ số a biết2014a chia hết cho 9
b) Tìm hai số nguyên dương a, b biết tích hai số bằng 216 và ƯCLN của chúng bằng 6.
Tìm hai số nguyên dương a,b biết ab = 216 và ƯCLN (a,b)= 6 .Giúp mình với mình câu like cho
Giải:
Do vai trò của a và b là như nhau, không mất tính tổng quát.
Giả sử b > a.
Ta có: ƯCLN(a,b) = 6 => a = 6m ; b = 6n (n > m do b > a)
Từ trên ta suy ra: ab = 6m.6n = 216
= 36mn = 216
=> mn = 216 : 36 = 6
Vậy: m = 1 ; n = 6 => a = 6 ; b = 36
m = 2 ; n = 3 => a = 12 ; b = 18
Giải:
Do vai trò của a và b là như nhau, không mất tính tổng quát.
Giả sử b > a.
Ta có: ƯCLN(a,b) = 6 => a = 6m ; b = 6n (n > m do b > a)
Từ trên ta suy ra: ab = 6m.6n = 216
= 36mn = 216
=> mn = 216 : 36 = 6
Vậy: m = 1 ; n = 6 => a = 6 ; b = 36
m = 2 ; n = 3 => a = 12 ; b = 18
Giải:
Do vai trò của a và b là như nhau, không mất tính tổng quát.
Giả sử b > a.
Ta có: ƯCLN(a,b) = 6 => a = 6m ; b = 6n (n > m do b > a)
Từ trên ta suy ra: ab = 6m.6n = 216
= 36mn = 216
=> mn = 216 : 36 = 6
Vậy: m = 1 ; n = 6 => a = 6 ; b = 36
m = 2 ; n = 3 => a = 12 ; b = 18
tìm hai số nguyên dương a,b biết BCNN(a,b) = 240 và ƯCLN(a,b)=16
giúp với ạ
+) Co: (a,b)= 16
=> a=16m;b=16n (m;n thuoc Z; (m,n)=1)
+)Co: ab=[a,b].(a,b)=240.16=3840
=> ab=16m.16n=256mn=3840
=> mn=3840:256=15
=>
m | 1 | 3 |
n | 15 | 5 |
=>
a | 16 | 48 |
b | 240 | 80 |
Vay hai co hai so nguyen duong la: 16;240
48;80
Cho 2 số nguyên dương a,b biết a/b=2,6 và ƯCLN(a,b)=5
CMR: 10 mũ hai mươi tám +8 chiaa hết cho 72
1028+8= 10.....0+8= 100....008
Ta có: chia hết cho 72 là chia hết cho 8 và 9 vì (8,9)=1
=>1028+8 chia hết cho 72 khi 1028+8 chia hết cho 8 và 9
100...008 chia hết cho 9 vì 1+0+..0+8=9 chia hết cho 9
100...008 chia hết cho 8 vì 008 chia hết cho 8
Vậy 1028+8 chia hết cho 72
Tìm hai số nguyên dương a,b biết ab 216 và ƯCLN(a;b) = 6 ; a < b
Ước chung lớn nhất của a và b = 6
=> a = 6a1 ( * )
=> b = 6b1 ( * )
Ước chung lớn nhất của a1 và b1 = 1
=> a . b = 6a1 . 6b1 = 216
=> a1 . b1 = 216 : ( 6 . 6 ) = 6
=> a1,b1 thuộc { 1 ; 2 ; 3 ; 6 }
Dựa vào ( * ) ta có a,b thuộc { 6 ; 12 ; 18 ; 36 }
Chúng ta chỉ có 4 cặp thôi nhé bạn