cho tam giác abc có a=90 độ.ab=3cm;ac=4cm.am là trung tuyến (m thuộc bc).trên tia đối ma lấy điểm d sao cho ma=md
a)tinh bc
b)ab=cd;ab//cd
c)h là trung điểm bm,trên đường thẳng ah lấy điểm e sao hả=hê.ce cắt ad tại f.cm f là trung điểm của ce
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Cho tam giác ABC có góc A=90 độ;AB=3cm;AC=4cm;BC=5cm.Tam giác DEF có góc D=90 độ;DF=3cm;DE=6cm.Vẽ phân giác BM của góc BAC.Chứng minh tam giác ABM đồng dạng với tam giác DEF
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
Cho tam giác ABC có góc A=90 độ; AB=3cm; AC=4cm và tam giác MNP có N=90 độ; MN=8cm; MP=10cm
a) Tính BC và NP
b) Chứng minh tam giác ABC đồng dạng với tam giác NPM
Cho tam giác ABC, có góc A bằng 90 độ.AB=12cm, BC=20cm.kẻ AH
Tính AC
Chứng minh AC^2=CH.BC.tính BH,HC
Vẽ tia phân giác AD của góc A(D thuộc BC),
Tính BD, trong 3 điểm H,B,D điểm nào nằm giữa 2 điểm còn lại.vì sao?
cho tam giác ABC và A'B'C' có :góc A=A' ; AB= 3cm; A'B' = 3cm;AC= 4cm ; A'C' = 4cm
a) so sánh tam giác ABC và tam giác A'B'C'
b) Giả sử góc A = 90 .Tính BC
a) Làm theo bạn Doan Thanh phuong nhé!
b) Ta có: A = 90o => Tam giác ABC vuông tại a.
Áp dụng định lý Pitago. Ta có:
\(AB^2+AC^2=BC^2\Leftrightarrow3^2+4^2=9+16=25\)
\(\Rightarrow BC^2=25\). Mà \(25=5^2\Rightarrow BC=5\) cm
a) Xét tam giác ABC và tam giác A'B'C' có :
\(\widehat{A}=\widehat{A'}\left(gt\right)\)
AB = A'B' ( gt )
AC = A'C' ( gt )
Suy ra tam giác ABC = tam giác A'B'C' ( c - g - c )
b) Ta có tam giác ABC vuông tại A ( gt )
=> AB2 + AC2 = BC2 ( định lý Py-ta-go )
hay 32 + 42 = BC2
BC2 = 32 + 42 = 9 + 16 = 25
=> BC = 5
a) Xét tam giác ABC và tam giác A'B'C' có :
^A=^A'(gt)
AB = A'B' ( gt )
AC = A'C' ( gt )
Suy ra tam giác ABC = tam giác A'B'C' ( c - g - c )
b) Ta có tam giác ABC vuông tại A ( gt )
=> AB2 + AC2 = BC2 ( định lý Py-ta-go )
hay 32 + 42 = BC2
BC2 = 32 + 42 = 9 + 16 = 25
=> BC = 5
Cho tam giác ABC có A = 90 độ ; AB = 3cm ; BC = 5cm . Diện tích của tam giác ABC bằng : a) 6cm ² b) 5cm ² c) 4cm ²
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)
cho tam giác ABC và tam giác A'B'C' có góc BAC+góc B'A'C'=180 độ.AB=A'B';AC=A'C'.M là trung điểm BC.chứng minh AM=1/2B'C'
\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
AB<AC<BC
=>góc C<góc B<góc A
AC=căn 5^2-3^2=4cm
AB<AC<BC
=>góc C<góc B<góc A