Cho \(n\left(n\ge3\right)\) số thực dương \(a_1;a_2;...;a_n\) thỏa mãn điều kiện:
\(\frac{1}{1+a_1^4}+\frac{1}{1+a_2^4}+...+\frac{1}{1+a_n^4}=1\)
Chứng minh rằng:
\(a_1a_2...a_n\ge\left(n-1\right)^{\frac{n}{4}}\)
Cho \(n\left(n\ge3\right)\) số thực dương \(a_1;a_2;a_3;...a_n\) thỏa mãn điều kiện:
\(\frac{1}{1+a_1^4}+\frac{1}{1+a_2^4}+\frac{1}{1+a_3^4}+...+\frac{1}{1+a_n^4}=1\)
Chứng minh rằng:
\(a_1a_2...a_n\ge\left(n-1\right)^{\frac{n}{4}}\)
cho n số thực dương \(a_{_{ }1},a_2,...,a_n\)có tổng bằng 1. Chứng minh rằng:
a) \(\left(a_1+\frac{1}{a_2}\right)^2+\left(a_2+\frac{1}{a_3}\right)^2+...+\left(a_n+\frac{1}{a_1}\right)^2\ge\left(\frac{n^2+1}{n}\right)^2\)
b) \(\left(a_1+\frac{1}{a_1}\right)^2+\left(a_2+\frac{1}{a_2}\right)^2+...+\left(a_n+\frac{1}{a_n}\right)^2\ge\left(\frac{n^2+1}{n}\right)^2\)
Cho \(a_1,a_2,..,a_n\) là các số nguyên dương và n>1.
Đặt \(A=a_1a_2...a_n,\) \(A_i=\dfrac{A}{a_i}\left(i=\overline{1,n}\right)\). CM các đẳng thức sau:
a) \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=A\)
b) \(\left[a_1,a_2,..,a_n\right]\left(A_1,A_2,...,A_n\right)=A\)
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
Cho n số dương a1,a2 ,...,an. Chứng minh rằng :
\(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2\)
Áp dụng bất đẳng thức Cô - si với n số dương ta được
\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)
Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)
(dấu "=" xẩy ra <=> a1=a2 =...=an)
Theo bat dang thuc cauchy ta co
a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)
1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)
Nhan 2 ve (1) va (2) ta duoc
(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren 2
=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an
Dau bang xay ra khi a1=a2=...=an
Mk giai co hieu ko
Chứng minh rằng với các số thực \(a_1,a_2,a_3,....,a_n\left(n\in N^{\circledast}\right)\), ta có :
\(\left|a_1+a_2+...+a_n\right|\le\left|a_a\right|+\left|a_1\right|+....+\left|a_n\right|\)
Cho đa thức \(P\left(x\right)=x^n+a_{n-1}x^{n-1}+...+a_1x+1\) có các hệ số không âm. CMR nếu \(P\left(x\right)\) có \(n\) nghiệm thực thì \(P\left(2\right)\ge3^n\)
Cho x, y là các số thực dương thảo mãn 2y > x. CMR:
\(\dfrac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge3\)
AM-GM thôi (:))
\(\dfrac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge3\sqrt[3]{\dfrac{y^2}{x\left(2y-x\right)}}\)
Ta chỉ cần chứng minh \(\dfrac{y^2}{x\left(2y-x\right)}\ge1\).Điều này đúng vì
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vậy ta có đpcm.Dấu = xảy ra khi x=y=1
Chứng minh rằng với mọi số dương \(a_1,a_2,...,a_n\) ta luôn có :
\(a_1^{\dfrac{1}{2}}+a^{\dfrac{2}{3}}_2+...+a_n^{\dfrac{n}{n+1}}\le a_1+a_2+...+a_n+\sqrt{\dfrac{2\left(\pi^2-3\right)}{9}\left(a_1+a_2+...+a_n\right)}\)
Cho x,y,z > 0 sao cho xyz = 1 và n là số nguyên dương
Chứng minh : \(\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)
Ta có : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)
\(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)
\(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3)
Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)
Áp dụng BĐT Cauchy cho 3 số ta có :
\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)
\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)
Đẳng thức xảy ra <=> x = y = z = 1