Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hiển Vinh
Xem chi tiết
Không Cần Biết 2
Xem chi tiết
Nguyen Thi Bich Huong
Xem chi tiết
Trần Minh Hoàng
6 tháng 3 2021 lúc 9:29

a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).

Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).

Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).

Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).

Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).

๖ACE✪Hoàngミ★Việtツ
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
11 tháng 9 2017 lúc 19:28

Áp dụng bất đẳng thức Cô - si với n số dương ta được 

\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)

Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)

(dấu "=" xẩy ra <=> a1=a2 =...=an)

Nguyen Tran Tuan Hung
11 tháng 9 2017 lúc 19:35

Theo bat dang thuc cauchy ta co

a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)

1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)

Nhan 2 ve (1) va (2) ta duoc

(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren ​​2

=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an

Dau bang xay ra khi a1=a2=...=an

Mk giai co hieu ko

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
19 tháng 5 2017 lúc 13:56

Dãy số - cấp số cộng và cấp số nhân

Lê Song Phương
Xem chi tiết
Thảo Phương lớp 9D5
Xem chi tiết
Neet
27 tháng 8 2017 lúc 16:10

AM-GM thôi (:))

\(\dfrac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge3\sqrt[3]{\dfrac{y^2}{x\left(2y-x\right)}}\)

Ta chỉ cần chứng minh \(\dfrac{y^2}{x\left(2y-x\right)}\ge1\).Điều này đúng vì

\(\Leftrightarrow\left(x-y\right)^2\ge0\)

Vậy ta có đpcm.Dấu = xảy ra khi x=y=1

ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
ʚɞONLYღYOU╰❥
Xem chi tiết
☆ĐP◈Replay-Music
28 tháng 6 2019 lúc 16:06

Ta có  : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)

            \(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)

            \(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3) 

Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)

Áp dụng BĐT Cauchy cho 3 số ta có : 

\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)

\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)

Đẳng thức xảy ra <=> x = y = z = 1