Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Chi Lan
Xem chi tiết
Nghị Hoàng Vũ
Xem chi tiết
What Coast
16 tháng 3 2016 lúc 18:43

làm nhanh đi

Minh Nguyễn Cao
Xem chi tiết
Thanh Tùng DZ
23 tháng 5 2019 lúc 21:22

Link bài tham khảo nè bạn

Thanh Tùng DZ
23 tháng 5 2019 lúc 21:23

vào câu hỏi tương tự ấy. có đó. 

mystic and ma kết
23 tháng 5 2019 lúc 21:23

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Anbe emxtanh
Xem chi tiết
Lê Song Phương
Xem chi tiết
AnxiousHalwe
30 tháng 5 2022 lúc 17:18

Ta phản chứng rằng không tồn tại 2 số nào bằng nhau trong 25 số trên, đồng nghĩa với 25 số trên là phân biệt, ta sắp xếp chúng theo thứ tự $a_1<a_2<...<a_25$, có thể thấy rằng, bộ số $1,2,...25$ chính là bộ số mà giá trị của vế trái lớn nhất, nhưng giá trị lúc này có thể tính được là xấp xỉ 8,6<9 nên không thỏa mãn, các bộ số khác hiển nhiên cũng sẽ khiến vế trái nhỏ hơn 9, vậy không tồn tại bộ số nào thỏa mãn nếu chúng phân biệt, ta có điều phải chứng minh

Nguyễn Ngọc Quý
30 tháng 5 2022 lúc 20:55

vvv

Nguyễn Thu Trà
Xem chi tiết
Anh Vũ
Xem chi tiết
Dung Đặng Phương
Xem chi tiết
Thiên An
27 tháng 7 2017 lúc 21:15

giup cai? can gap! gap! gap!? | Yahoo Hỏi & Đáp

IS
19 tháng 3 2020 lúc 23:01

chứng minh = phản chứng . giả sử trong 25 số tự nhiên ko có 2 số nào bằng nhau . ko mất tính tổng quát , giả sử\(a_11,a_22,..,a_{25}25\)

thế thì

\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{25}}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..+\frac{1}{\sqrt{25}}\)

ta lại có \(\frac{1}{\sqrt{25}}+..+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{1}}=\frac{1}{\sqrt{25+\sqrt{25}}}+\frac{1}{\sqrt{2+\sqrt{2}}}+1\)

\(< \frac{2}{\sqrt{24+\sqrt{24}}}+.+\frac{2}{\sqrt{2+\sqrt{2}}}+1\)

\(=2\left(\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{25}-\sqrt{1}\right)+1=9\left(2\right)\)

từ (1) zà 2 suy ra \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..+\frac{1}{\sqrt{a_{25}}}< 9\)trái zới giả thiết , suy ra ko tồn tại 2 số nào = nhau trong 25 số

Khách vãng lai đã xóa
EDOGAWA CONAN
Xem chi tiết