chứng minh với n thuộc N; a = 405^n + 4^405 + m^2 ko chia hết cho 10 không,
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8
chứng minh rằng với mọi n thuộc N^ ta có n^5/5 +n^4/2+n^3/3-n/20 thuộc Z
bạn hãy giúp mình với! thanks!
Chứng minh phân số sau là phân số tối giản:
a, 4n+8/2n+3 với n thuộc N
b, 7n+4/9n+5 với n thuộc N
c, 12n+1/30n+2 với n thuộc N
a: Gọi d=UCLN(4n+8;2n+3)
\(\Leftrightarrow4n+8-4n-6⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+3 là số lẻ
nên d=1
=>ĐPCM
b: Gọi a=UCLN(7n+4;9n+5)
\(\Leftrightarrow63n+36-63n-35⋮a\)
=>a=1
=>ĐPCM
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Chứng minh rằng với mọi n thuộc N*, ta có
a.
Với \(n=1\Rightarrow4\ge3+1\) (đúng)
Giả sử đẳng thức đúng với \(n=k\ge1\) hay \(4^k\ge3k+1\)
Ta cần chứng minh nó cũng đúng với n=k+1 hay: \(4^{k+1}\ge3\left(k+1\right)+1\)
Thật vậy, ta có:
\(4^{k+1}=4.4^k\ge4\left(3k+1\right)=12k+4=3\left(k+1\right)+1+9k>3\left(k+1\right)+1\) (đpcm)
b.
Với \(n=1\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}>1\) (đúng)
Giả sử BĐT đúng với \(n=k\) hay: \(\dfrac{1}{k+1}+\dfrac{1}{k+2}+...+\dfrac{1}{3k+1}>1\)
\(\Rightarrow\dfrac{1}{k+2}+\dfrac{1}{k+3}+...+\dfrac{1}{3k+1}>1-\dfrac{1}{k+1}\)
Ta cần chứng minh nó cũng đúng với n=k+1 hay:
\(\dfrac{1}{k+2}+\dfrac{1}{k+3}+...+\dfrac{1}{3\left(k+1\right)+1}>1\)
\(\Leftrightarrow\dfrac{1}{k+2}+\dfrac{1}{k+3}+...+\dfrac{1}{3k+4}>1\)
Thật vạy, ta có:
\(\dfrac{1}{k+2}+\dfrac{1}{k+3}+..+\dfrac{1}{3k+4}\)
\(=\dfrac{1}{k+2}+...+\dfrac{1}{3k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}\)
\(>1-\dfrac{1}{k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}\) (1)
Mặt khác ta có:
\(\dfrac{1}{3k+2}+\dfrac{1}{3k+4}-\dfrac{2}{3k+3}=\dfrac{2}{\left(3k+2\right)\left(3k+3\right)\left(3k+4\right)}>0\)
\(\Rightarrow\dfrac{1}{3k+2}+\dfrac{1}{3k+4}>\dfrac{2}{3k+3}\)
\(\Rightarrow\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}>\dfrac{3}{3k+3}=\dfrac{1}{k+1}\) (2)
(1);(2) \(\Rightarrow1-\dfrac{1}{k+1}+\dfrac{1}{3k+2}+\dfrac{1}{3k+3}+\dfrac{1}{3k+4}>1\) (đpcm)
Chứng minh rằng : n.(n+2).(n+7)chia hết với n thuộc N
n chia hết cho n với mọi số tự nhiên
=> n(n+2)(n+7) chia hết cho n thuộc N
Ta có: n chia hết cho n
Suy ra: n.(n+2).(n+7) cũng sẽ chia hết cho n
chứng minh phân số n/n-1 tối giản (với n thuộc n*) ?
Ta có: Gọi d là UC(n;n+1)
=> n+1 chia hết cho d, n chia hết cho d (1)
=> (n+1) - n = 1 (2)
Từ (1) và (2) => 1 chia hết cho d
=> d = + 1
Vậy phân số n/n+1 là phân số tối giản.
Chứng minh :
BCNN(6n+1,n)=n.6n+n với n thuộc N
D=1.2 + 2.3 + 3.4 + ....+ n.(n+1) với n thuộc N sao . Chứng tỏ 3D là tích của 3 số tự nhiên liên tiếp
E= 1.2.3 + 2.3.4 + ..... + n.(n+1).(n+2)với n thuộc N sao
hãy chứng minh
tbc của 3 số là 96. tổng của stn và sth là 148. tbc của số thứ 1 và số thứ 3 là 75. tìm ba số
ai biết làm ko
chứng minh rằng với n thuộc N* thì 16^n-15n-1