Cho tam giác MNP CÂN TẠI M.NA,PB LẦN LƯỢT LÀ PHÂN GIÁC CÁC GÓC N VÀ GÓC P (A THUỘC MB;P THUỘC MN)
CHƯNGA MINH TAM GIÁC MPB = TAM GIÁC MNA
VẼ HỘ HÌNH VÀ CHỨNG MINH HỘ NHA
Cho tam giác MNP cân tại M. NA, PB lần lượt là các phân giác Góc N và Góc P (A thuộc MB; P thuộc MN)
Chứng Minh tam Giác MPB = tam giác MNA
vẽ hộ hình luôn ạ và chứng minh luôn ạ
Thank.
cho tam giác MNP cân tại M,kẻ các đường phân giác NA và PB với A thuộc MP và B thuộc MN.
a)chứng minh MB=MA
b)chứng minh tứ giác NBAP là hình thang cân và có đáy nhỏ bằng cạnh bên.
Cho tam giác MNP vuông cân ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. a) Chứng minh: HMN = KPM. b) Chứng minh MAP là tam giác cân và AH vuông góc AK.
a: góc KPM=góc KPB+góc MPN=45 độ+góc BNH
góc HMN=góc HMA+góc NMA=45 độ+góc HMA
mà góc BNH=góc HMA
nên góc KPM=góc HMN
b: ΔMNP vuông cân tại M
mà MA là trung tuyến
nên MA=AP
=>ΔMAP cân tại M
cho tam giác MNP cân tại P . Trên PM và PN lần lượt lấy 2 điểm A và B sao cho PA=PB
CMR tứ giác MABN là hình thang có 2 góc kề 1 đáy bằng nhau
Xét tam giác PAB ta có:
PA = PB (gt)
-> tam giác PAB cân tại P
-> góc PAB = góc PBA ( tính chất tam giác cân )
Xét tam giác MNP cân tại P , ta có:
góc M= góc N ( tính chất tam giác cân )
Xét tam giác PAB ta có:
Góc P+ PAB + PBA = 180 độ ( định lí tổng 3 góc trong tam giác )
mà PAB=PBA (cmt)
-> PAB = \(\frac{180-P}{2}\left(1\right)\)
Xét tam giác PMN, ta có:
P + M +N = 180 độ ( định lí tổng 3 góc trong tam giác )
-> M = \(\frac{180-P}{2}\left(2\right)\)
Từ (1) và (2) -> PAB = M
mà PAB và M là 2 góc đồng vị
-> AB // MN ( dấu hiệu nhận biết 2 đường thẳng song song)
Xét tứ giác MABN ,ta có:
AB // MN
-> MABN là hình thang có 2 góc M và N kề 1 đáy bằng nhau
cho ABCD là hình thang cân (AB//CD,AB<CD,góc ADC=60 độ),đường phân giác của góc ADC cắt AC,AB lần lượt tại I,M.Kẻ AE//BC(E thuộc DC).
a) chứng minh tam giác ADE là tam giác đều và DC=AB+AM.
b)Cho IA/IC=4/11 và MA-MB=6cm.Tính MB/AM và AM,MB.
Cho tam giác ABC cân tại A; CP,BQ lần lượt là các đường phân giác của góc C và góc B (P thuộc AB,Q thuộc AC).Gọi O là giao điểm của CP và BQ.
A,CMR:tam giác OBC là tam giác cân.
B,CMR:đường thẳng AO đi qua trung điểm của BC,
C,CMR:CP=BQ và tam giác APQ là tam giác cân.
GIẢI GIÚP MÌNH BÀI NÀY VỚI Ạ.
Cho tam giác MNP vuông tại M, MH vuông góc với NP (H thuộc NP) ,MN = 3; MB = 4. Tia phân giác ND của góc MNP cắt MP tại D ; MH tại K . a) tính DM; DP b) chứng minh : KH/KM = DM/DP c) Chứng minh : NH×ND=NM×NK và Tam giác MDK cân .
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)
\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)
\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)
\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)
b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)
△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)
c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\); \(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)
\(\Rightarrow\)△MDK cân tại M
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
d)\(\Delta AMC\)CÂN\(\Rightarrow AC=MC\)
\(\Delta MCN\)CÂN\(\Rightarrow MC=CN\)
=> AC=CN
=> AC LÀ TRUNG TUYẾN CỦA \(\Delta MAN\)
MÀ MP=AP => NP LÀ TRUNG TUYẾN CỦA\(\Delta MAN\)
HAI ĐƯOG TRUNG TUYẾN NÀY CẮT NHAU TẠI G
=> G LÀ TROG TÂM CỦA \(\Delta MAN\)
\(\Rightarrow NG=\frac{2}{3}NP\)
THAY \(\Rightarrow NG=\frac{2}{3}.5=\frac{10}{3}\approx3,3\left(cm\right)\)
Cho tam giác ABC nội tiếp đường tròn (O) . Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E . Dây DE cắt các cạnh AB và AC lần lượt tại M và N . Chứng minh rằng
a) Tam giác AMN là tam giác cân
b) Các tam giác EAI và DAI là những tam giác cân
c) Tứ giác AMIN là hình thoi