Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CÀ RỐT CHANNELL
Xem chi tiết
Đại Ma Vương
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 13:35

a: góc KPM=góc KPB+góc MPN=45 độ+góc BNH

góc HMN=góc HMA+góc NMA=45 độ+góc HMA

mà góc BNH=góc HMA

nên góc KPM=góc HMN

b: ΔMNP vuông cân tại M

mà MA là trung tuyến

nên MA=AP

=>ΔMAP cân tại M

Princess Sun
Xem chi tiết
Nguyễn Thị Vân Anh
7 tháng 6 2016 lúc 21:25

Xét tam giác PAB ta có:

PA = PB (gt)

-> tam giác PAB cân tại P 

-> góc PAB = góc PBA ( tính chất tam giác cân )

Xét tam giác MNP cân tại P , ta có:

góc M= góc N ( tính chất tam giác cân )

Xét tam giác PAB ta có:

Góc P+ PAB + PBA = 180 độ ( định lí tổng 3 góc trong tam giác )

mà PAB=PBA (cmt)

-> PAB = \(\frac{180-P}{2}\left(1\right)\)

Xét tam giác PMN, ta có:

P + M +N = 180 độ ( định lí tổng 3 góc trong tam giác )

-> M = \(\frac{180-P}{2}\left(2\right)\)

Từ (1) và (2) -> PAB = M 

mà PAB và M là 2 góc đồng vị

-> AB // MN ( dấu hiệu nhận biết 2 đường thẳng song song)

Xét tứ giác MABN ,ta có:

AB // MN 

-> MABN là hình thang có 2 góc M và N kề 1 đáy bằng nhau

Chóii Changg
Xem chi tiết
Minh Cao
Xem chi tiết
Ngân Ziro
Xem chi tiết
Trần Tuấn Hoàng
22 tháng 3 2022 lúc 19:42

-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!

a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)

\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)

\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)

\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)

b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)

△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)

c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\)\(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)

\(\Rightarrow\)△MDK cân tại M

 

nguyễn thị thu trang
Xem chi tiết
Trí Tiên亗
23 tháng 6 2020 lúc 22:08

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

Khách vãng lai đã xóa
Trí Tiên亗
23 tháng 6 2020 lúc 22:53

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

Khách vãng lai đã xóa
Trí Tiên亗
23 tháng 6 2020 lúc 23:14

d)\(\Delta AMC\)CÂN\(\Rightarrow AC=MC\)

    \(\Delta MCN\)CÂN\(\Rightarrow MC=CN\)

=> AC=CN 

=> AC LÀ TRUNG TUYẾN CỦA \(\Delta MAN\)

MÀ MP=AP => NP LÀ TRUNG TUYẾN CỦA\(\Delta MAN\)

HAI ĐƯOG TRUNG TUYẾN NÀY CẮT NHAU TẠI G 

=> G LÀ TROG TÂM CỦA \(\Delta MAN\)

\(\Rightarrow NG=\frac{2}{3}NP\)

THAY \(\Rightarrow NG=\frac{2}{3}.5=\frac{10}{3}\approx3,3\left(cm\right)\)

Khách vãng lai đã xóa
Xem chi tiết