Cho tam giác DEF cân tại D, đường phân giác DI. Gọi N là trung điểm của IF. Vẽ điểm M sao cho N là trung điểm của DM. CMR:
a, tam giác DIN= tam giác MNF; MF VUÔNG GÓC EF
b, DF>MF
c ,góc IDN=NDF
d, D,I,K thẳng hàng
Bài 7: Cho tam giác DEF cân tại D, DI là phân giác của EDF (I thuộc EF). Gọi N là trung điểm của
IF. Vẽ điểm M sao cho N là trung điểm của DM. Chứng minh rằng:
1) ADIN = AMFN và MF 1 EF.
2) Cho DE = 8cm, EF = 12cm. Tính độ dài đoạn thẳng FM.
3) DF > MF và IDN > NDF.
4) Gọi K là trung điểm của ME. Chứng minh D, I, K thẳng hàng
1: Xét ΔDIN và ΔMFN có
ND=NM
\(\widehat{DNM}=\widehat{MNF}\)
NI=NF
Do đó: ΔDIN=ΔMFN
Suy ra: DI=FM
mà DI<DF
nên FM<DF
2: EF=12cm nên IF=6cm
\(\Leftrightarrow DI=FM=\sqrt{8^2-6^2}=2\sqrt{7}\left(cm\right)\)
Cho tam giác nhọn ABC, AD là đường cao. Vẽ các điểm M, N sao cho AB là trung trực của DM, AC là trung trực của DN. Gọi E, F lần lượt là giao điểm của MN với AC, AB. CMR: a) Tam giác AMN cân b) DE+EF+DF=MN c) DA là phân giác góc EDF d) Giao điểm các đường phân giác của tam giác DEF và trực tâm tam giác ABC trùng nhau
tự kẻ hình nha:333
a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)
xét tam giác MAB và tam giác DAB có
MH=HD(cmt)
AHM=AHD(=90 độ)
AH chung
=> tam giác MAB= tam giác DAB(cgc)
=> AM=AD( hai cạnh tương ứng)
vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)
xét tam giác AKD và tam giác AKN có
DK=NK(cmt)
AKD=AKN(=90 độ)
AK chung
=> tam giác AKD= tam giác AKN( cgc)
=> AN=AD ( hai cạnh tương ứng)
AM=AD(cmt)
=> AM=AN=> tam giác AMN cân A
b) vì E thuộc đường trung trực AB=> EM=ED
vì F thuộc đường trung trực AC=> FD=FN
ta có MN=ME+EF+FN mà EM=ED, FD=FN
=> MN= ED+EF+FD
c) xét tam giác ADF và tam giác ANF có
FD=FN(cmt)
AD=AN(cmt)
AF chung
=> tam giác ADF= tam giác ANF(ccc)
=> ANF=ADF( hai góc tương ứng)
xét tam giác AME và tam giác ADE có
AM=AD(cmt)
AE chung
EM=ED(cmt)
=> tam giác AME= tam giác ADE(ccc)
=> AME=ADE( hai góc tương ứng)
mà AME=ANF( tam giác AMN cân A)
=> ADE=ADF=> AD là p/g của EDF
d) chưa nghĩ đc :)))))))
CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI
Cho tam giác DEF cân tại D.DI là đương phân giác
a/ C/minh tam giác DIE=tam giác DIF
b/N là trung điểm của IF.Vẽ điểm M sao cho N là trung điểm của DM.C/minh tam giác DIN=tam giác MFN và MF vuông góc với EF
c/C/minh D,I,K thẳng hàng ( K là trung điểm của ME)
GIÚP MÌNH NHÉ
Cho tam giác DEF cân tại D, đường phân giác DI. Gọi N là trung điểm của IF. Vẽ M sao cho N là trung điểm của DM. Chứng minh:
a) Tam giác DIN = Tam giác MNF
b) MF vuông góc với EF
c) DF > MF
Giari hộ mình với , cảm ơn nhiều ạ!
Mình đang cần gấp ạ.
Bài 3. Cho tam giác ABC vuông tại A, lấy điểm D trên cạnh BC. Kẻ DM vuông góc AB (M thuộc AB); DN vuông góc AC (N thuộc AC). Vẽ các điểm I và K sao cho M; N tương ứng là trung điểm của DI và DK. CMR:
a) tam giác AMD = tam giác AMI và tam giác AND = tam giác AKN.
b) I; A; K thẳng hàng.
c) A là trung điểm của IK.
d) Nếu AD là phân giác của góc A thì AD vuông góc với IK.
Giúp mik với mik cần gấp
a: Xét ΔAMD vuông tại M và ΔAMI vuông tại M có
AM chung
MD=MI
Do đó:ΔAMD=ΔAMI
Xét ΔAND vuông tại N và ΔANK vuông tại N có
AN chung
ND=NK
Do đó: ΔAND=ΔANK
b: \(\widehat{IAK}=2\cdot\left(\widehat{DAM}+\widehat{DAN}\right)=2\cdot90^0=180^0\)
=>I,A,K thẳng hàng
c: Ta có: I,A,K thẳng hàng
mà AI=AK(=AD)
nên A là trung điểm của KI
cho tam giác DEF cân tại D vẽ DH vuông góc EF tại H
a/ chứng minh tam giác DEH = tam giác DFH. Suy ra H là trung điểm của EF
b/ lấy M ϵ DE, N ϵ DF, sao cho MD = ND. Chứng minh tam giác HMN là tam giác cân
c/ chứng minh MN // EF
d/ Gọi i là trung điểm của MN. Chúng minh D, I, H thẳng hàng
a) xét tam giác DHE và tam giác DHF có
DH chung
DE = DF (gt)
góc DHE = góc DHF (=90 độ)
=> tam giác DHE = tam giác DHF (c.g.c)
=> HE = HF
=> H là trung điểm của EF
b) xét tam giác EMH và tam giác FNH có
HE = HF (cmt)
Góc MEH = góc MFH (gt)
Góc EHM = góc FHM (đối đỉnh)
=> tam giác EMH = tam giác FNH (g.c.g)
=> HM = HN
=> tam giác HMN cân tại H
a: Xét ΔDEH vuông tại H và ΔDFH vuông tại H có
DE=DF
DH chung
=>ΔDEH=ΔDFH
=>EH=FH
=>H là trung điểm của EF
b: Xet ΔDMH và ΔDNH có
DM=DN
góc MDH=góc NDH
DH chung
=>ΔDMH=ΔDNH
=>HM=NH
c: Xet ΔDEF có DM/DE=DN/DF
nên MN//EF
d: ΔDMN cân tại D
mà DI là trug tuyến
nên DI là phân giác của góc EDF
=>D,I,H thẳng hàng
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
a/ Vì EF2=DE2+DF2 (Pytago)
=> Tam giác DEF vuông tại D
Cho tam giác ABC có ba góc nhọn, AB < AC. Kẻ đường cao AD. Vẽ điểm M sao cho AB là trung trực của DM, vẽ điểm N sao cho AC là trung trực của DN.
a) Chứng minh tam giác AMN cân tại A
b) Đường thẳng MN cắt AB, AC lần lượt tại F, E. Chứng minh DA là tia phân giác của E D F ^ .
c) Chứng minh EB là tia phân giác của D E F ^ .
d) Chứng minh B E ⊥ A C .
e) Chứng minh AD, BE, CF đồng quy.
Cho tam giác DEF cân tại D, đường phân fiasco DI. Gọi N là trung điểm của IF. Vẽ điểm M sao cho N là trung điểm của DM. Chứng minh rằng:
a) Tam giác DIN=tam giác MNF; MF vuông góc EF.
b) DF>MF.
c) Góc IDN>góc NDF.
d) D,I,K thẳng hàng( K là trung điểm của ME)
a) Xét ΔDIN và ΔMNF có
DN=MN(N là trung điểm của DM)
\(\widehat{DNI}=\widehat{MNF}\)(hai góc đối đỉnh)
IN=NF(N là trung điểm của IF)
Do đó: ΔDIN=ΔMNF(c-g-c)
⇒\(\widehat{IDN}=\widehat{NMF}\)(hai góc tương ứng)
mà \(\widehat{IDN}\) và \(\widehat{NMF}\) là hai góc ở vị trí so le trong
nên DI//MF(dấu hiệu nhận biết hai đường thẳng song song)
Xét ΔEDI và ΔFDI có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDI}=\widehat{FDI}\)(DI là tia phân giác của \(\widehat{EDF}\))
DI chung
Do đó: ΔEDI=ΔFDI(c-g-c)
⇒\(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)
nên \(\widehat{DIE}=\widehat{DIF}=\frac{180^0}{2}=90^0\)
⇒DI⊥EF
Ta có: DI⊥EF(cmt)
DI//FM(cmt)
Do đó: FM⊥EF(định lí 2 từ vuông góc tới song song)
b) Xét ΔIFM vuông tại F có IM là cạnh huyền
nên IM là cạnh lớn nhất trong ΔIFM(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
⇒IM>FM(1)
Xét ΔINM và ΔFND có
IN=FN(N là trung điểm của IF)
\(\widehat{INM}=\widehat{FND}\)(hai góc đối đỉnh)
NM=ND(N là trung điểm của MD)
Do đó: ΔINM=ΔFND(c-g-c)
⇒IM=FD(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra DF>MF(đpcm)
c) Xét ΔDFM có DF>MF(cmt)
mà góc đối diện với cạnh DF là \(\widehat{DMF}\)
và góc đối diện với cạnh MF là \(\widehat{FDM}\)
nên \(\widehat{DMF}>\widehat{FDM}\)(định lí 1 về quan hệ giữa cạnh và góc đối diện trong tam giác)
mà \(\widehat{DMF}=\widehat{IDN}\)(cmt)
nên \(\widehat{IDN}>\widehat{MDF}\)
hay \(\widehat{IDN}>\widehat{NDF}\)(đpcm)
d) Ta có: ΔEFM vuông tại F(EF⊥FM)
mà FK là đường trung tuyến ứng với cạnh huyền EM(K là trung điểm của EM)
nên \(FK=\frac{EM}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(EK=\frac{EM}{2}\)(K là trung điểm của EM)
nên FK=EK
⇔K nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: DE=DF(ΔDEF cân tại D)
nên D nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: IE=IF(ΔEDI=ΔFDI)
nên I nằm trên đường trung trực của FE(tính chất đường trung trực của một đoạn thẳng)(5)
Từ (3), (4) và (5) suy ra D,I,K thẳng hàng(đpcm)