: Cho tam giác ABC vuông tại B, phân giác AD. Từ D kẻ DH vuông góc với AC (H vuông gócAC); HD và AB kéo dài cắt nhau tại I. Chứng minh rằng: a) tam giác ABD= tam giác AHD . b) tam giác BDI = tam giácHDC . c) tam giácAIC cân. d) BC> AC+ AD- 2AB
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a. Chứng minh: AD = HD
b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cách AC tại D. Từ D kẻ DH vuông góc với BC (H€BC) và DH cách AB tại K a) Chứng minh AD =DH b) So sánh độ dài cạnh AD và BC c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
Bài :Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. a. Chứng minh: AD = HD b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
A CMR AD =HD
B so sánh độ dài cạnh Ad và DC
C CMR tam giác KBC là tam giác cân
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H, DH cắt AB tại K.
a) Chứng minh: AD = DH.
b) Chứng minh: AD < DC.
c) Chứng minh tam giác KBC là tam giác cân.
\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
có: \(AD\): cạnh chung
\(\widehat{ABD}=\widehat{HBD}\) ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
\(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
\(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)
\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có: \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
mà \(AD=DH\) \(\Rightarrow\)\(AD< DC\)(đpcm)
\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có: \(\widehat{BHK}=\widehat{BAC}=90^0\) ( gt )
\(BH=AB\) ( vì \(\Delta ABD=\Delta HBD\))
\(\widehat{KBH}\): góc chung ( gt )
\(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
\(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
\(\Rightarrow\)\(\Delta KBC\)cân tại \(B\)
cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a, CM AD=HD
b, So sánh AD VÀ DC
c, CM TAM GIÁC ABC Cân
Ta có hình vẽ sau: ( tự vẽ hình nha bạn)
a) Xét \(\Delta ABD\)và \(\Delta HBD\):
BD: cạnh chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAD}=\widehat{BHD}=90^o\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
=> AD=HD( 2 cạnh tương ứng)
=> đpcm
b)Xét \(\Delta DHC\)vuông tại H có:
DC>HC
Mà HD=AD ( cm câu a)
=> DC> AD
c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)
Xét \(\Delta ADK\)và \(\Delta HDC:\)
AD=HD( cm câu a)
\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)
\(\widehat{DHK}=\widehat{DHC}=90^o\)
=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)
=> AK=HC ( 2 cạnh t/ứ)
Mà AB=BH( \(\Delta ABD=\Delta HBD\))
=> AB+AK=HC+BH
=> BK=BC
=> \(\Delta BKC\)cân tại B
=> đpcm
a) Xét tam giác ABD và tam giác HBD có :
BD chung
^ABD = ^HBD ( BD là phân giác của ^B )
=> Tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD ( hai cạnh tương ứng )
=> AB = AH ( _________________ )
b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )
^BHD + ^DHC = 1800 ( kề bù )
Mà ^BAD = ^BHD = 900
=> ^DAK = ^DHC = 900
Xét tam giác DAK và tam giác DHC có :
^DAK = ^DHC ( cmt )
DA = DH ( cmt )
^ADK = ^HDC ( đối đỉnh )
=> Tam giác DAK = tam giác DHC ( g.c.g )
=> AD = DC ( hai cạnh tương ứng )
=> AK = HC ( _________________ )
c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )
Ta có : BK = BA + AK
BC = BH + HC
Mà BA = BH , AK = HC ( cmt )
=> BK = BC
Xét tam giác KBC có BK = BC ( cmt )
=> Tam giác KBC cân tại B ( đpcm )
Giải
a) Xét tam giác vuông ABD và tam giác vuông HBD có:
BD là cạnh huyền chung
Góc ABD = góc HBD (BD là tia phân giác góc ABC)
=> Tam giác BAD = tam giác BHD ( cạnh huyền_góc nhọn)
=> AD = DH ( 2 cạnh tương ứng)
b) Ta có:
BD là tia phân giác của góc ABC và cắt AC tại D
=> D là trung điểm của AC
=> AD = DC
c) Xét tam giác vuông ADK và tam giác vuông HDC có:
AD =DH ( tam giác BAH = tam giác BHD)
Góc ADK = góc HDC ( 2 góc đối đỉnh)
=> Tam giác ADK = tam giác HDC
Ta có:
BK = BA + AK
BC = BH + HC
Mà BA = BH ( tam giác BAH = tam giác BHD)
AK = HC ( tam giác ADK = tam giác HDC)
=> BK = BC
=> Tam giác KBC cân tại B
cho tam giác ABC vuông tại B, phân giác AD. từ D kẻ DH vuông góc với AC;HD và AB kéo dài cắt nhau tại I.cmr:
a,tam giác DIC cân;
b,BHsong song với IC ;
c, AD vuông góc với IC ;
d,BC>AC+AD-2AB
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt AC tại D . Kẻ DH vuông góc với BC ( H thuộc BC ) và DH cắt AB tại K . CM :
a. AD = DH
b. AD < DC
c. TAm giác KBC cân
a)xét 2 tam giác vuông ABD và HBD có:
BD(chung)
ABD=CBD(gt)
suy ra tam giác ABD=HBD(CH-GN)
suy ra AD=DH
b)
ta có: tam giác HCD vuông tại H sủy a DC là cạnh lớn nhất trong tam giác đó
suy ra DC>DH mà DH=Ad suy ra AD<DC
c)
xét 2 tam giác vuông BHK và BAC có:
BA=BH(cmt)
BHK=BAC=90
B(chung)
suy ra : tam giác BHK=BAC(g.c.g)
suy ra BC=BK
suy ra tma giác BKC cân tại B
a, Xét tg ABD và BDH :
Ta có : A=H=90 ( vuông nhau )
BD cạnh chung
góc ADB = góc DBH
=> tg ABD = tg DBH ( gcg)
=>AD=DH (2 cạnh tương ứng)
b, Xét tg DHC vuông tại H
Mà H là góc lớn nhất
=> DC là cạnh lớn nhất
Mà : trong tg DHC có :
DC > DH
Nên : DC> DH=AD
Vậy : DC>AD
c, k pt
Cho tam giác ABC vuông tại A, kẻ đường phân giác BD từ D, kẻ DH vuông góc với BC(H thuộc BC)
a) CM: AD=Dh
b) So sánh AD và DC
c) Có AB=6cm,AC=8cm. Tính HD
Mình nói tóm tắt thôi nhé!
a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)
b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD
c) Mình chưa nghĩ ra
Câu c là tính HC nhé bạn!
c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm
BH + HC = BC = 10cm
BH = AB = 6cm
=> HC = 10 - 6 = 4 cm
Chúc bạn học tốt!