Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chóii Changg
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 19:04

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=CD+BD=4,5+12,5=17(cm)

Ta có: Chu vi của tam giác ABC là 42cm(gt)

nên AB+AC+BC=42

hay AB+AC=25(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{AB}{12.5}=\dfrac{AC}{4.5}\)

mà AB+AC=25(cm)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{12.5}=\dfrac{AC}{4.5}=\dfrac{AB+AC}{12.5+4.5}=\dfrac{25}{17}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AB}{12.5}=\dfrac{25}{17}\\\dfrac{AC}{4.5}=\dfrac{25}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{25\cdot12.5}{17}=\dfrac{625}{34}\\AC=\dfrac{25\cdot4.5}{17}=\dfrac{225}{34}\end{matrix}\right.\)

Vậy: \(AB=\dfrac{625}{34}cm;AC=\dfrac{225}{34}cm\)

Hân Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 20:56

a: BD=36mm=3,6cm

CD=60mm=6cm

=>BC=9,6cm

AB/AC=BD/CD=3,6/6=3/5

=>BH/CH=(AB/AC)^2=9/25

b: BH/CH=9/25

=>BH/9=CH/25=(BH+CH)/(9+25)=9,6/34=24/85

=>BH=216/85; CH=120/17

AH=căn BH*CH=72/17(cm)

Trịnh Minh Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 11:50

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

nên \(AB=\dfrac{3}{5}AC\)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=36+60=96(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\dfrac{3}{5}AC\right)^2+AC^2=96\)

\(\Leftrightarrow\dfrac{34}{25}AC^2=96\)

\(\Leftrightarrow AC^2=\dfrac{1200}{17}\)

\(\Leftrightarrow AB=\dfrac{3}{5}AC=\dfrac{3}{5}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{12\sqrt{51}}{17}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC nên 

\(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{432}{17}:\dfrac{1200}{17}=\dfrac{432}{1200}=\dfrac{9}{25}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot96=\dfrac{12\sqrt{51}}{17}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{720}{17}\)

hay \(AH=\dfrac{15}{34}\left(cm\right)\)

Nguyễn Hữu Tuân
Xem chi tiết
lomg vu
Xem chi tiết
Trương Phúc Uyên Phương
30 tháng 8 2015 lúc 22:04

ta có BD là đgờng phân giác trong tam giác ABC

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{36}=\frac{AC}{60}\Rightarrow\frac{AB}{AC}=\frac{36}{60}=\frac{3}{5}\)

Ta có : \(AB^2=BC.BH\Rightarrow BH=\frac{AC^2}{BC}\)

           \(AC^2=CH.BC\Rightarrow HC=\frac{AC^2}{BC}\)

TA CÓ :\(\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{BC}.\frac{BC}{AC^2}=\frac{AB^2}{AC^2}=\frac{3^2}{5^2}=\frac{9}{25}\)

B) ta có tam giác AHB đồng dạng tam giác CHA ( bn c/m nka ~ dễ lắm )

\(\Rightarrow\frac{HA}{HC}=\frac{HB}{HA}\Rightarrow HA^2=HB.HC\)

Ta có : HB + HC = 96

\(\frac{HB}{HC}=\frac{9}{25}\)

giải tìm HB , HC nhen  thế vô pt là ok ^^

châu diệu
Xem chi tiết
D-low_Beatbox
4 tháng 4 2021 lúc 16:54

a, Xét △DAB và △CBD có:

∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)

=> △DAB ∼ △CBD (g.g)

Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ

mà ∠ADB=∠DCB => ∠DCB=30 độ (1)

Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)

Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ

=> △IDC cân tại I

 

 

Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 7 2023 lúc 16:16

\(a,\\ \text{ĐL đường p/g: }\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{36}{60}=\dfrac{3}{5}\\ \text{Hệ thức lượng: }\dfrac{HB}{HC}=\dfrac{\dfrac{AB^2}{BC}}{\dfrac{AC^2}{BC}}=\dfrac{AB^2}{AC^2}=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\\ b,BC=BD+CD=HB+HC=96\left(cm\right)\\ \to\dfrac{9}{25}HC+HC=96\\ \to HC=\dfrac{1200}{17}\to HB=\dfrac{432}{17}\\ \to AH=\sqrt{HC\cdot HB}=\dfrac{720}{17}\left(cm\right)\)

Đào Lê Phương Tiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2021 lúc 19:24

a) Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{1}{2}\)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=2+4=6(cm)Xét ΔABC có 

AF là đường phân giác góc ngoài ứng với cạnh BC(gt)

nên \(\dfrac{FB}{FC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác góc ngoài)

\(\Leftrightarrow\dfrac{FC}{FB}=\dfrac{AC}{AB}=2\)

\(\Leftrightarrow\dfrac{FC-FB}{FB}=\dfrac{AC-AB}{AB}\)

\(\Leftrightarrow\dfrac{BC}{FB}=1\)

hay FB=6(cm)

Ta có: FB+BD=FD(B nằm giữa F và D)

nên FD=6+2=8(cm)

Vậy: FD=8cm

nguyên công quyên
Xem chi tiết