Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
Xyz OLM
2 tháng 1 2022 lúc 21:00

Gọi MA = x => MB = 8 - x (0 < x < 8)

Khi đó MC2 = AM2 + AC2 = 42 + x2 = 16 + x2

=> \(MC=\sqrt{x^2+16}\)

Tương tự ta được 

MD = \(\sqrt{\left(8-x\right)^2+4}\)

Khi đó MC + MD = \(\sqrt{x^2+4^2}+\sqrt{\left(8-x\right)^2+2^2}\)

\(\ge\sqrt{\left(x+8-x\right)^2+\left(4+2\right)^2}=10\)

Dấu "=" xảy ra <=> \(\dfrac{x}{4}=\dfrac{8-x}{2}\Leftrightarrow x=\dfrac{16}{3}\)

Kết quả không đổi với AM = 8 - x ; MB = x 

Khi đó Min = 10 với x = 8/3

Vậy Min MD + MC = 10 khi MA = 16/3 cm hoặc MB = 16/3 cm  

Nguyễn Việt Bách
Xem chi tiết
Trần Vinh Khánh
Xem chi tiết
kuroba kaito
7 tháng 4 2020 lúc 8:52

ai chơi ngọc rồng onlie ko cho mk xin 1 nick

Khách vãng lai đã xóa
I - Vy Nguyễn
7 tháng 4 2020 lúc 11:44

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

\(\implies\)  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

\(\implies\) AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

\(\implies\) CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

\(\implies\) ED = AC + BD 

\(\implies\) CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

\(\implies\) DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

\(\implies\) 2. OB2 - 2 . BD . BE = 0 

\(\implies\) 2. OB2 = 2 . BD . BE

\(\implies\) OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

\(\implies\) AC . BD = ( AB / 2 )2 

\(\implies\) AC . BD = AB2 / 4 

Khách vãng lai đã xóa
dcv_new
21 tháng 4 2020 lúc 8:16

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

 AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

 tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

 CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

 ED = AC + BD 

 CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

 DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

 2. OB2 - 2 . BD . BE = 0 

 2. OB2 = 2 . BD . BE

 OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

 AC . BD = ( AB / 2 )2 

 AC . BD = AB2 / 4 

Khách vãng lai đã xóa
nguyễn xuân hoạt
Xem chi tiết
Thieu Gia Ho Hoang
13 tháng 2 2016 lúc 15:53

moi hok lop 6 thoi

nguyễn xuân hoạt
13 tháng 2 2016 lúc 16:10

ai giải đc cho 10k

 

 

Nguyễn Minh Huy
Xem chi tiết
sakura
7 tháng 4 2017 lúc 19:46

ủng hộ mk nha mọi người

Tạ Ngọc Tú
22 tháng 5 2018 lúc 5:35

Bạn tự vẽ hình nha

Câu a

Chứng minh : Kẻ OC cắt BD tại E

Xét ΔCAO và ΔEBO có :

ˆA=^OBE (=1v)

AO=BO (gt)

^COA=^BOE (đối đỉnh)

⇒ΔCAOEBO (cgv - gn )

OC=OE ( hai cạnh tương ứng )

và AC=BE ( hai cạnh tương ứng )

Xét ΔOCD và ΔOED có :

OC=OE (c/m trên )

^COD=^DOE ( = 1v )

OD chung

⇒ΔOCDOED (cgv - cgv )

CD=DE (hai cạnh tương ứng )

mà DE = BD + BE

và AC = BE ( c/m trên )

CD=AC+BD

Nguyễn Minh Quang
20 tháng 2 2019 lúc 22:58

bạn có đọc nội quy không bạn Nguyễn Minh Huy, k k linh tinh nhé, (dcmm)

Thái Thị Minh Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2021 lúc 22:05

Xét ΔAMC vuông tại A và ΔBMD vuông tại B có 

MA=MB(M là trung điểm của AB)

AC=BD(gt)

Do đó: ΔAMC=ΔBMD(hai cạnh góc vuông)

nên \(\widehat{AMC}=\widehat{BMD}\)(hai góc tương ứng)

mà \(\widehat{AMC}+\widehat{BMC}=180^0\)(hai góc kề bù)

nên \(\widehat{BMD}+\widehat{BMC}=180^0\)

\(\Leftrightarrow\widehat{CMD}=180^0\)

hay C,M,D thẳng hàng(đpcm)

Ngọc Mai Trần
Xem chi tiết
 Nguyễn Tuệ Minh
14 tháng 4 2020 lúc 18:05

Mình cũng đang cần . Ai bt chỉ mình với , link cũng đc nhé. Thank you.

Khách vãng lai đã xóa
Chí
Xem chi tiết
Rinnie
Xem chi tiết
Rinnie
25 tháng 11 2021 lúc 14:28

các bạn vẽ hình giúp mink lun nha