Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đậu Hoài Mỹ
Xem chi tiết
ngô trung hiếu
Xem chi tiết
Nguyễn Ngọc Huy Toàn
1 tháng 3 2022 lúc 19:24

a.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(AC^2=BA^2+BC^2\)

\(\Rightarrow BC=\sqrt{AC^2-BA^2}=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

\(S_{ABC}=\dfrac{1}{2}.BA.BC=\dfrac{1}{2}.6.8=24cm^2\)

b.Xét tam giác BAH và tam giác ABC, có:

\(\widehat{B}=\widehat{H}=90^o\)

Góc A: chung 

Vậy tam giác BAH đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{BH}{BC}=\dfrac{AB}{AC}\)

\(\Leftrightarrow\dfrac{BH}{8}=\dfrac{6}{10}\)

\(\Leftrightarrow10BH=48\Leftrightarrow BH=4,8cm\)

Áp dụng định lý pitago vào tam giác vuông ABH, có:

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6cm\)

Áp dụng định lý pitago vào tam giác vuông ACH, có:

\(BC^2=CH^2+BH^2\)

\(\Rightarrow CH=\sqrt{BC^2-BH^2}=\sqrt{8^2-4,8^2}=\sqrt{40,96}=6,4cm\)

c. Xét tam giác BHA và tam giác BHC, có:

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\widehat{ACH}=\widehat{BAH}\) ( cùng phụ với góc B )

Vậy tam giác BHA đồng dạng tam giác BHC ( g.g )

Trần Tuấn Hoàng
1 tháng 3 2022 lúc 19:26

a) -Xét △ABC vuông tại B:

\(AB^2+BC^2=AC^2\) (định lí Py-ta-go)

\(\Rightarrow BC=\sqrt{AC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(S_{ABC}=\dfrac{AB.BC}{2}=\dfrac{6.8}{2}=24\left(cm^2\right)\)

b) -Xét △BAH và △ABC:

\(\widehat{AHB}=\widehat{ABC}=90^0\)

\(\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△BAH∼△CAB (g-g)

\(\Rightarrow\dfrac{BH}{CB}=\dfrac{AH}{AB}=\dfrac{BA}{CA}\)

\(\Rightarrow BH=\dfrac{BA.CB}{CA}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

\(AH=\dfrac{BA.AB}{CA}=\dfrac{6.6}{10}=3,6\left(cm\right)\)

\(HC=AC-AH=10-3,6=6,4\left(cm\right)\)

c) -Xét △BHA và △HBC:

\(\widehat{BHA}=\widehat{BHC}=90^0\)

\(\widehat{ABH}=\widehat{HCB}\)(△BAH∼△CAB)

\(\Rightarrow\)△BHA∼△CHB (g-g)

 

Nguyễn Phương Linh
Xem chi tiết
Gia Huy
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

nguyen khac viet hung
Xem chi tiết
Duyên Trương
Xem chi tiết
Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 10 2023 lúc 15:55

loading...  

Khoa Trần Anh
Xem chi tiết
Mina Nguyễn
Xem chi tiết
Đỗ Thị Thu Huyền
Xem chi tiết
Nguyễn Thị Phương Linh
Xem chi tiết
Nguyễn Thị Phương Linh
7 tháng 12 2017 lúc 6:52

ko cần vẽ hình đâu

Bùi Thị Vân
7 tháng 12 2017 lúc 10:21

Bạn ghi lại đề nhé. Tính tam giác có nghĩa là gì ? điểm K chưa xác định rõ.