\(A=\frac{5^{^5}}{5+5^{^2}+5^{^3}+5^{^4}}\&B=\frac{3^{^5}}{3+3^{^2}+3^{^3}+3^{^4}}\)
Tìm x biết:
a.
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}...\frac{30}{62}.\frac{31}{64}=2^x\)
b.
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot....\cdot\frac{30}{62}\cdot\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.....\cdot\frac{30}{31}\cdot\frac{31}{32}\right)=2^x\)
\(\Leftrightarrow\frac{1}{32}=2^{x+1}\)
Làm nốt.
ko làm được câu này hay câu b ib với tớ nha.khẳng định tối giải.
A)\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}....\frac{30}{62}.\frac{31}{64}=4^x\)
B)\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)
Bài 1:
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+1986}\right)\)
Nhận xét: \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó: \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+1986}\right)\)
\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{1985\cdot1988}{1986\cdot1987}=\frac{1\cdot4\cdot1988}{1986\cdot3}=\frac{3976}{2979}\)
Bài 2:
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
\(\Rightarrow\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=2^x\)\(\Rightarrow\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^x\)
\(\Rightarrow\frac{\left(2^2\right)^6}{3^6}\cdot\frac{\left(2\cdot3\right)^6}{2^6}=2^x\)\(\Rightarrow\frac{2^{12}}{3^6}\cdot\frac{2^6\cdot3^6}{2^6}=2^x\)
\(\Rightarrow\frac{2^6\cdot3^6\cdot2^{12}}{2^6\cdot3^6}=2^x\)\(\Rightarrow2^{12}=2^x\Rightarrow x=12\)
tìm x biết
a, \(\frac{1}{2}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot...\cdot\frac{30}{62}\cdot\frac{31}{64}=4^x\)
b, \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)
c,\(\left|4x+3\right|-\left|x-1\right|=7\)
mong các bạn giúp !!!
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^5.\left(1+1+1+1+1+1\right)}{2^5.\left(1+1\right)}\)
\(=\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=\frac{4^6}{3^6}.\frac{6^6}{2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Ta có: \(2^{12}=\left(2^3\right)^4=8^4\)
Vậy x= 4
A = \(\frac{\frac{-11}{2}+\frac{\frac{-5}{3}}{1-\frac{4}{3}}}{\frac{3}{5}-\frac{\frac{-2}{5}}{\frac{4}{5}-\frac{2}{3}}}\)
\(A=\frac{\frac{-11}{2}+\frac{\frac{-5}{3}}{1-\frac{4}{3}}}{\frac{3}{5}-\frac{\frac{-2}{5}}{\frac{4}{5}-\frac{2}{3}}}\)
\(A=\frac{\frac{-11}{2}+\frac{\frac{-5}{3}}{\frac{-1}{3}}}{\frac{3}{5}-\frac{\frac{-2}{5}}{\frac{2}{15}}}\)
\(A=\frac{\frac{-11}{2}+5}{\frac{3}{5}-\left(-3\right)}=\frac{\frac{-1}{2}}{\frac{3}{5}+3}=\frac{\frac{-1}{2}}{\frac{18}{5}}=\frac{-5}{36}\)
cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt:>
TÌM x biết:
a) \(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\frac{5}{12}\cdot...\cdot\frac{30}{62}\cdot\frac{31}{62}=4^x\)
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)
c)\(\left|4x+3\right|-\left|x-1\right|=7\)
a.4^7
b.8^5
c.cho x mk sẻ tính kết quả nhưng tìm xmk ko tính đâu
A=\(\frac{\frac{1}{3}-\frac{5}{2}}{\frac{3}{4}-\frac{1}{2}}\).\(\frac{\frac{5}{6}+\frac{7}{3}}{1-\frac{5}{6}}\).\(\frac{-\frac{2}{5}+1}{\frac{2}{5}+1}\)
B=\(\frac{\frac{1}{3}-\frac{4}{5}}{\frac{1}{3}-\frac{4}{5}}\).\(\frac{\frac{3}{4}-\frac{5}{3}}{\frac{3}{4}+\frac{5}{3}}\):\(\frac{\frac{4}{5}-1}{1-\frac{2}{3}}\)
mong mọi người giải giúp em
Cho A=\(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
CMR: A<\(\frac{5}{3}\)
\(A=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)
\(A=5\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)
\(\frac{A}{5}=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)
\(\frac{4A}{5}=1+\frac{1}{4}+...+\frac{1}{4^{98}}\)
\(\frac{4A}{5}-\frac{A}{5}=\left(1+\frac{1}{4}+...+\frac{1}{4^{98}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)
\(\frac{3A}{5}=1-\frac{1}{4^{99}}\Rightarrow A=\frac{5}{3}-\frac{5}{3\cdot4^{99}}< \frac{5}{3}\)
a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }};\,\,a = 5\)
b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}};\,\,a = \sqrt 2 \)
a) \(A = \sqrt[3]{{5\sqrt {\frac{1}{5}} }} = \sqrt[3]{{a\sqrt {\frac{1}{a}} }} = \sqrt[3]{{a.{a^{\frac{1}{2}}}}} = \sqrt[3]{{{a^{\frac{3}{2}}}}} = {\left( {{a^{\frac{3}{2}}}} \right)^{\frac{1}{3}}} = {a^{\frac{3}{2}.\frac{1}{3}}} = {a^{\frac{1}{2}}} = \sqrt a \)
b) \(B = \frac{{4\sqrt[5]{2}}}{{\sqrt[3]{4}}} = \frac{{{2^2}{{.2}^{\frac{1}{5}}}}}{{{4^{\frac{1}{3}}}}} = \frac{{{2^{\frac{{11}}{5}}}}}{{{2^{\frac{2}{3}}}}} = {2^{\frac{{23}}{{15}}}}\)
\(a = \sqrt 2 = {2^{\frac{1}{2}}}\)
=> \(B = {a^{\frac{{23}}{{30}}}}\)