So sánh \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1};B=\dfrac{2008^{2009}}{2008^{2009}-3}\)
So sánh A và B biết: A= \(\dfrac{2008+2008+2010}{2009+2010+2011}\) và B= \(\dfrac{2008}{2009}\)+ \(\dfrac{2009}{2010}\)+ \(\dfrac{2010}{2011}\)
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B
So sánh bt: \(A=\dfrac{2008^{2008}+1}{2008^{2009}+1};B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(A=\dfrac{2008^{2008}+1}{2008^{2009}+1}\)
\(2008\cdot A=\dfrac{2008^{2009}+2008}{2008^{2009}+1}\)
\(=\dfrac{2008^{2009}+1+2007}{2008^{2009}+1}\)
\(=1+\dfrac{2007}{2008^{2009}+1}\)
\(B=\dfrac{2008^{2007}+1}{2008^{2008}+1}\)
\(2008\cdot B=\dfrac{2008^{2008}+2008}{2008^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2007}{2008^{2008}+1}\)
\(=1+\dfrac{2007}{2008^{2008}+1}\)
Ta có: \(2008^{2009}+1>2008^{2008}+1\)
\(\Rightarrow\dfrac{1}{2008^{2009}+1}< \dfrac{1}{2008^{2008}+1}\)
\(\Rightarrow\dfrac{2007}{2008^{2009}+1}< \dfrac{2007}{2008^{2008}+1}\)
\(\Rightarrow1+\dfrac{2007}{2008^{2009}+1}< 1+\dfrac{2007}{2008^{2008}+1}\)
hay \(A < B\)
#\(Toru\)
Bài 2 : So sánh
\(A=\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}vàB=\dfrac{2008+2009+2010}{2009+2010+2011}\)
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
so sánh A =\(\dfrac{2009^{2008}+1}{2009^{2009}+1}\)
B = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\)
Nhanh nha đang cần gấp
Giải:
Ta có:
A=20092008+1/20092009+1
2009A=20092009+2009/20092009+1
2009A=20092009+1+2008/20092009+1
2009A=20092009+1/20092009+1 + 2008/20092009+1
2009A=1+2008/20092009+1
Tương tự:
B=20092009+1/20092010+1
2009B=1+2008/20092010+1
Vì 2008/20092009+1 > 2008/20092010+1 nên 2009A>2009B
⇒A>B
SO SÁNH CÁC SỐ SAU
A=2008^2009+2/2008^2009-1 vàB=2008^2009/2008^2009-3
ta có A = 2008^2009+2 / 2008^2009-1 = 2008^2009-1+3 / 2008^2009-1 = 1 + 3/2008^2009-1
lại có B = 2008^2009 / 2008^2009-3 = 2008^2009-3+3 / 2008^2009-3 = 1 + 3/2008^2009-3
vì 3/2008^2009-1 < 3/2008^2009-3 => 1 + 3/2008^2009-1 < 1 + 3/2008^2009-3
Hay A<B
Vậy A<B
so sánh 2 phân số : \(A=\frac{2008^{2009}+2}{2008^{2009}-1};B=\frac{2008^{2009}}{2008^{2009}-3}\)
2. So sánh A và B:
A= 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010
B=-1/2006*2007 - 1/2008*2009
So sánh
(2008^2009+1)/ (2008^2009-1) và (2008^2009)/ (2008^2009-3)
so sánh 2008 với tổng 2009 số hạng sau\(s=\frac{2008+2007}{2009+2008}+\frac{^{2008^2+2007^2}}{2009^2+2008^2}+.....+\frac{2008^{2009}+2007^{2009}}{2009^{2009}+2008^{2009}}\)