Cho tam giác ABC cân tại A.Vẽ AH vuông góc BC
a)CM:góc BAH = góc HAC
b)Biết AB=20cm;AH=6cm.Tính BC
1)Cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài tam giác ABC hai tam giác đều ABM và ACN
a) Tính góc MBC
b)Kẽ AI vuông góc BC.CM:IA=IB=IC
c)CM:IM=IN
2)Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC
a)CM: góc BAH = góc HAC
b)Biết AB=20cm;AH=6 cm.Tính BC
Bài 4. Cho tam giác ABC vuông tại A. Vẽ AH vuông góc với BC tại H. Tia phân giác của góc BAH cắt BH ở D. Chứng minh rằng:
a) góc ABH = góc HAC
b) góc ADC = góc DAC
Cho tam giác ABC vuông tại A.Vẽ tia BD là tia phân giác của góc B. Trên BC lấy điểm E sao cho BE=AB. a)Chứng minh tam giác ABD = tam giác EBD,DE vuông góc với BC,Kẻ AH vuông góc với BC. Chứng minh góc BAH = góc ACH và AH song song với DE
Cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC) a. Chứng minh : BH = HC và góc BAH = góc CAH b. Biết AB = AC = 5cm; BC = 8cm. Tính AH
a) Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
\(AB=AC\) (Do tam giác ABC cân tại A)
\(AH\) chung
\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)
b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)
Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)
\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)
Cho tam giác ABC vuông tại A ,có AB=AC .Gọi H là trung điểm của BC
a,Cm:tam giác AHB =tam giác AHC
b, Cm:góc BAH=góc ACH
c,Trên tia đối của tia AH lấy điểm E sao cho AE=BC ,trên tia đối của tia CA lấy điểm F sao cho CF=AB .CM:BE=BF ;BE VUÔNG GÓC VÓI BF
a: Xét ΔAHB và ΔAHC co
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
cho tam giác ABC cân tại A, kẻ đường cao AH (H thuộc BC)
a/ chứng minh : tam giác AHB= tam giác AHC
b/chứng minh : HB=HC và góc BAH=góc CAH
c/ cho BC=20cm, AB = 8cm.tính độ dài đoạn thẳng AH
d/ kẻ HD vuông góc AB (D thuộc AB), HE vuông góc AC ( E thuộc AC). chứng minh rằng tam giác HDE là tam giác cân
e/ chứng minh rằng DE//BC
Cho tam giác ABC cân ở A. Kẻ AH vuông góc BC tại Ha) CM: tam giác ABH= tam giác ACH và góc BAH = góc CAHb) Kẻ HD vuông góc AB; HE vuông góc AC. CM: tam giác ADE là tam giác cân c) CM: DE//BC
a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC
AH⊥BC ⇒ gócAHB=gócAHC
Xét △ABH và △ACH có:
gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)
⇒ △ABH=△ACH (ch-gn)
b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)
Xét △DAH và △EAH có
gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)
AH là cạnh chung
⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)
⇒ △ADE cân tại A
c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)
△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)
⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị
⇒ DE//BC
Cho tam giác ABC cân tại A có AB = AC = 5cm, kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: BH = HC và góc BAH = góc CAH
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ EH vuông góc với AC (E thuộc AC). Tam giác ADE là tam giác gì ? Vì sao ?
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Cho tam gia ABC cân tại A.Vẽ AH vuông góc BC.Biết AB=AC=13cm;BC=10cm
a)chứng minh tam giác AHB=tam giác AHC
b)Tính AH
c)Qua C ,vẽ đường thẳng vuông góc BC cắt AB tại E,chứng minh CE//AH
Bạn tự vẽ hình nhé.
a/ Xét tam giác AHB và tam giác AHC có:
AB = AC (vì tam giác ABC cân tại A)
góc ABC = góc ACB (vì tam giác ABC cân tại A)
AH: cạnh chung
=> tam giác AHB = tam giác AHC (c.g.c)
Note: Câu a còn có 2 cách khác nữa, cần inbox mình :)
b/ Ta có tam giác ABC cân tại A => AH vừa là đường cao vừa là trung tuyến
=> HB = HC = BC / 2 = 10 / 2 = 5 (cm)
Xét tam giác ABH vuông tại H có:
AH^2 + BH^2 = AB^2 (pytago)
AH^2 + 5^2 = 13^2 (Vì: 169 - 25 = 144)
=> AH^2 = 144
=> AH = \(\sqrt{144}\)= 12 (cm)
c/ Ta có:
AH vuông góc BC (gt)
CE vuông góc BC (gt)
=> CE // AH
a) Xét tam giác vuông AHB và tam giác vuông AHC có
AB=AC( vì tam giác ABC cân tại A)
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\) ( 2 cạnh góc vuông)
b) Có \(\Delta AHB=\Delta AHC\)
=>BH=HC
=>H là trung điểm của BC
=>BH=BC/2=10/2=5(cm)
Xét tam giác AHB vuông tại H có
\(AB^2=AH^2+BH^2\)
=>132=AH2+52
=>AH2=132-52=144
=>AH=12
Vậy AH=12 cm)
Có \(AH⊥BC,CE⊥BC\)
=>CE//AH( quan hệ giữa tính vuông góc và song song)