Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Triệu Nguyễn Gia Huy
Xem chi tiết
lindachan
Xem chi tiết
Nhut Tran
Xem chi tiết
Loey🍒
Xem chi tiết
Minh Hồng
17 tháng 4 2022 lúc 9:50

a) Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

\(AB=AC\) (Do tam giác ABC cân tại A)

\(AH\) chung

\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)

b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)

Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)

\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)

Phạm anh thư 6c
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 19:49

a: Xét ΔAHB và ΔAHC co

AH chung

HB=HC

AB=AC

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH

vvvvvvvv
Xem chi tiết
Cấn Thị Thảo My
Xem chi tiết
D-low_Beatbox
10 tháng 1 2021 lúc 18:07

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

Thái Thanh Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 14:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

Nguyen Thi Ngoc Han
Xem chi tiết
Vũ Như Mai
6 tháng 4 2017 lúc 9:47

Bạn tự vẽ hình nhé.

a/ Xét tam giác AHB và tam giác AHC có:

        AB = AC (vì tam giác ABC cân tại A)

       góc ABC = góc ACB (vì tam giác ABC cân tại A)

       AH: cạnh chung 

=> tam giác AHB = tam giác AHC (c.g.c)

Note: Câu a còn có 2 cách khác nữa, cần inbox mình :)

b/ Ta có tam giác ABC cân tại A => AH vừa là đường cao vừa là trung tuyến

=> HB = HC = BC / 2 = 10 / 2 = 5 (cm)

Xét tam giác ABH vuông tại H có:

 AH^2 + BH^2 = AB^2 (pytago)

AH^2 + 5^2    = 13^2 (Vì: 169 - 25 = 144)

=> AH^2        = 144

=> AH = \(\sqrt{144}\)= 12 (cm)

c/ Ta có: 

AH vuông góc BC (gt)

CE vuông góc BC (gt)

=> CE // AH

Nguyễn Tuấn Minh
6 tháng 4 2017 lúc 9:40

a) Xét tam giác vuông AHB và tam giác vuông AHC có

AB=AC( vì tam giác ABC cân tại A)

Cạnh AH chung

=> \(\Delta AHB=\Delta AHC\) ( 2 cạnh góc vuông)

b) Có \(\Delta AHB=\Delta AHC\)

=>BH=HC

=>H là trung điểm của BC

=>BH=BC/2=10/2=5(cm)

Xét tam giác AHB vuông tại H có

\(AB^2=AH^2+BH^2\)

=>132=AH2+52

=>AH2=132-52=144

=>AH=12

Vậy AH=12 cm)

Có \(AH⊥BC,CE⊥BC\)

=>CE//AH( quan hệ giữa tính vuông góc và song song)

Nguyen Thi Ngoc Han
6 tháng 4 2017 lúc 20:48

câu b mình chưa hiểu lắm bạn ơi