Cho tg ABC có AB=5,76;AC=6,29 & BC =7,48.Kẻ đ̀g cao BH và phân giác AD.Tính:
1.Độ dài đ̀g cao BH
2.Đừờng phân giác AD
3.Diện tính tam giác CHD
Cho tam gíac ABC có AB=5,76;AC=6,29 & BC =7,48.Kẻ đ̀ường cao BH và phân giác AD.Tính:
1.Độ dài đ̀g cao BH
2.Đừờng phân giác AD
3.Diện tính tam giác CHD
Cho tg ABC vuông tại A có AB=9, BC=15,đường cao AH. Đường phân giác của gốc B của tg ABC cắt AH tại E
a)Tính AC, từ đó tính diện tích tg ABC
b) Chứng minh tg HAB đồng dạng với tg HCA
c) Tính AE
đ) Gọi M là trung điểm của AH, N là trung điểm của BH. Chứng minh tg ABN đồng dạng với tg CAM
a,Áp dụng định lý Py ta go vào tam giác vuông ABC có :
AB^2+AC^2=BC^2
=> AC^2=BC^2 - AB^2
=> AC^2=15^2-9^2=144
=> AC = 12
Diện tích tam giác ABC là: 9.12/2=54
Tam giác ABH và tam giácAHC có
Góc BAH=góc ACH(=90- góc HAC)
ABH = HAC ( = 90 - BAH )
=> hai tam giac đồng dạng ( g.g )
c, chiều dai AH là: 54.2:15=7.2 Chiều dài AE là 2/3 . 7.2 = 4.8
cho tam giác ABC có 3 gọc nhọn có 3 đường cao AM, BN, CM. a/ CM: tg ANL đồng dạng tg ABC b) CM: AN.BL.CM= AB.BC.CA.cosA.cosB.cosC
cho tg abc vuông tại a có góc b=60 độ.trên bc lấy d sao cho ba=bd.tia p.giác của góc b cắt ac tại i
a.cm tg bad đều
b.cm tg ibc cân
c. cm d là t.điểm bc
d.cho ab=6cm.tính bc,ac
Tam giác ABC cân tại A có AB=14cm. Đg trung trực của AB cắt canh AC ở E. Biết chu vi tg BEC =24cm. Tính độ dài BC
CHo tam giác(tg) ABC có AB = AC. Tia phân giác góc A cắt BC tại D
a) CM: tg ABD = tg ACD
b) trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Cx vuông góc với BC. Trên nửa mặt phẳng vờ AB chứa điểm C vẽ tia Ay//BC. CM : góc yAC = góc ABC
c) CM: AD// Cx
d) Gọi I là trung điểm của AC, K là giao điểm của 2 tia Ay và Cx. CM: I là trung điểm của DK
a) Ta có AB = AC => ABC là tg cân ( cân tại A)
Xét \(\Delta ABD\)Và \(\Delta ACD\)
\(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )
\(AC=AB\)
AD LÀ CẠNH CHUNG
=> 2 tam giác = nhau ( c.g.c )
b) Ta có Ay//BC
=> \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )
Mà \(\widehat{ACB}=\widehat{ABC}\)
=> \(\widehat{yAC}=\widehat{ABC}\)
c) Ta có tg ABC cân
=> AD là đg phân giác cũng là đường cao
=> \(AD\perp BC\)
MÀ \(Cx\perp BC\)
=> AD//Cx
d) Ta có Ay ( AK) //BC
Mà \(\widehat{ADC}=90^O\)
=> \(DA\perp Ay\)
Tứ giác AKCD là hình chữ nhâtk
mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )
=> I là trung điểm của DK
Cho tg ABC có góc A nhọn. Kẻ đường cao BK,CH.
a) CM: góc ABK=góc ACH
b) Trên tia đối của tia BK với CH lll E, F sao cho BE=AC, CF=AB. C/m .
c) Chứng minh tam giác AEF vuông cân.
a: Xét ΔABK vuông tại K và ΔACH vuông tại H có
\(\widehat{HAC}\) chung
Do đó: ΔABK\(\sim\)ΔACH
Suy ra: \(\widehat{ABK}=\widehat{ACH}\)
Cho TG ABC . Trên cạnh AB lấy điểm I , trên cạnh BC lấy điểm J sao cho AB = 2AI , AC = 3CJ . Diện tích TG ABC gấp số lần diện tích TG BIJ là .........
cho tg ABC vuông ở A. trên tia đối của tia AC lấy điểm D sao cho AD=AC. a)CM tg ABC=tg ABD. b)trên tia đối của tia AB, lấy điểm M. CM tg MBD=tg MBC
a) Ta có : Tam giác ABC vuông ở góc A (gt)
=>Góc BAC = 90o
Ta có : Góc BAD+góc BAC=180o
=>Góc BAD=90o
Xét tam giác ABC và tam giác ABD , có :
AC=AD (gt)
Góc BAC=Góc BAD (=90o)
AB là cạnh chung
=> Tam giác ABC = Tam giác ABD (c.g.c)
b) Vì tam giác ABC = tam giác ABD (cmt)
=>DB=BC (2 cạnh tương ứng)
=>Góc DBA= Góc CBA (2 góc tương ứng )
Xét tam giác MBD và tam giác MBC, có:
AM là cạnh chung
Góc DBM= Góc CBM (cmt)
DB=DC (cmt)
=>Tam giác MBD = Tam giác MBC (c.g.c)
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
BA chung
CA=DA
Do đó: ΔABC=ΔABD
b: Xét ΔMAD vuông tại A và ΔMAC vuông tại A có
AM chung
AD=AC
Do đó: ΔMAD=ΔMAC
Suy ra: MD=MC
Xét ΔMBD và ΔMBC có
MB chung
MD=MC
BD=BC
Do đó: ΔMBD=ΔMBC