a: Xét ΔABK vuông tại K và ΔACH vuông tại H có
\(\widehat{HAC}\) chung
Do đó: ΔABK\(\sim\)ΔACH
Suy ra: \(\widehat{ABK}=\widehat{ACH}\)
a: Xét ΔABK vuông tại K và ΔACH vuông tại H có
\(\widehat{HAC}\) chung
Do đó: ΔABK\(\sim\)ΔACH
Suy ra: \(\widehat{ABK}=\widehat{ACH}\)
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC )
d) chứng minh tam giác BEI là tam giác cân.
b) chứng tỏ OE = OF.
c) đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại O. CHỨNG tỏ tam giác EKF là tam giác cân và OK vuông góc với EF.
Cho Tam Giác ABC đều kẻ Ah vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE=BC. Trên tia đối của tia CB lấy điểm D Sao cho CB=CD.
A, Chứng minh rằng tam giác AEB=ADC
b, Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng tam giác CHF cân
c, Chứng minh rằng AD//HF
d, Từ B kẻ Bm Vuông góc AE tại M, Từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của Bm và Cn . Chứng Minh AI là phân giác của góc BAC.
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
Cho tam giác ABC vuông tại B có \(\widehat{A}\)= 60 độ . Kẻ BK vuông góc AC (K thuộc AC ), trên tia KC lấy điểm D sao cho KD = KA.
a) Chứng minh tam giác AKB = tam giác DKB
b) Chứng minh tam giác BAD là tam giác đều
c) Chứng minh BD là phân giác của góc KBC
d) Kẻ DE vuông góc BC (E thuộc BC ) trên tia đối của tia KB lấy điểm M sao cho KM = KB . Chứng minh M, D, E thẳng hàng
Cho tam giác ABC cân ( AB=AC; góc A tù ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy E sao choBD=CE. Trên tia đối của CA lấy điểm I sao cho CI=CA.
a) Chứng minh: AB+AC < AD+AE
b) Từ D và E kẻ các đường thẳng cùng vuông góc với BC cắt AB; AI theo thứ tự tại M;N. Chứng minh BM=CN.
c) Chứng minh rằng chu vi tam giác ABC nhỏ hơn chu vi tam giác AMN.
Cho tam giác ABC có B>C, Đường cao AH
a,Chứng minh AH<\(\frac{1}{2}\)(AB+AC)
b,Hai đường trung tuyến BM,CN cắt nhau tại G. Trên tia đối của tia MB lấy điểm E sao cho ME=MG. Trên tia đối của tia NC lấy điểm F sao cho NF=NG. Chứng minh: EF=BC
c,Đường thẳng AG cắt BC tại K. Chứng minh góc AKB> góc AKC
2.Cho tam giác ABC có góc A<90°. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. Chứng minh: DC=BE và DC vuông góc với BE.
Mong các bạn giúp đỡ, cảm ơn các bạn
cho tam giác ABC, AB < AC, M là trung điểm của BC. Từ M kẻ đường thẳng vuông góc với tia phân giác góc A tại H, đường thẳng này cắt tia AB tại E và cắt tia Ac tại F
a) Cm: AE = AF
b) Vẽ đường thẳng BK song song EF và K thuộc AC. Cm KF = CF, BE = CF
Cho tam giác ABC cân tại A (A là góc nhọn). Kẻ BD vuông AC ( D thuộc AC) , CE vuông AB ( E thuộc AB), BD và CE cắt nhau tại H
a) CHứng minh BD = CE
b) tam giác BHC cân
c) AH là đường trung trực của BC
d) trên tia BD lấy K sao cho D là trung điểm BK . So sánh góc ECB và góc DKC
Cho tam giác ABC vuông tại B, đường phân giác AD( D thuộc BC ). kẻ BO vuông góc với AD ( O thuộc AD ), BO cắt AC tại E. Chứng minh:
a) Tam giác ABO= tam giác AEO
b) Tam giác BAE cân
c) AD là đường trung trực của BE.
d) Kẻ BK vuông góc với AC ( K thuộc AC ). Gọi M là giao điểm của BK với AD. Chứng minh rằng ME song song với BC.