cho tam giác ABC vuông tại A,AB=15;AC=20.kẻ đường cao AH
a.chứng ning tam giác ADB đồng dạng với tam giác BCD
b.tính BC,CD
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC, đường cao AM.
a) Biết tam giác ABC vuông tại A, AB : BC = 3 : 4 và diện tích tam giác ABC là 150 cm2. Tính AM.
b) Biết tam giác ABC vuông tại A, AB = 15 cm, CM = 16 cm. Tính chu vi tam giác ABC.
Bài 1: cho tam giác ABC vuông tại B,đường cao AH.Tính AM biết AH=15 cm,AB=5 cm
Bài 2: cho tam giác ABC vuông tại A,AB=AC=10cm,BC=12cm.Đường cao AB,BE cắt nhau tại H.hãy tìm tam giác đồng dạng với tam giác BDH
cho tam giác ABC có AB =9 , AC=12, BC=15 .Chứng minh tam giác ABC vuông tại A
ta có : AB2 + AC2 = 92 + 122 = 81 +144 = 225
BC2 = 152 = 225
suy ra AB2 + AC2 = BC2
do đó tam giác ABC vuông tại A ( theo định lí pitago đảo)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
cho tam giác abc vuông tại a có bc=102cm. ab trên ac = 8 trên 15 . tính các cạnh của tam giác vuông
Ta có: \(\dfrac{AB}{AC}=\dfrac{8}{15}\)(gt)
nên \(AB=\dfrac{8}{15}\cdot AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\left(\dfrac{8}{15}\cdot AC\right)^2+AC^2=102^2\)
\(\Leftrightarrow\dfrac{64}{225}AC^2+AC^2=102^2\)
\(\Leftrightarrow\dfrac{289}{225}AC^2=102^2\)
\(\Leftrightarrow AC^2=102^2:\dfrac{289}{225}=8100\)
hay AC=90(cm)
Ta có: \(AB=AC\cdot\dfrac{8}{15}\)(cmt)
nên \(AB=90\cdot\dfrac{8}{15}=48\left(cm\right)\)
Vậy: AC=90cm; AB=48cm
cho tam giác ABC vuông tại A,AB bằng 9,AC bằng 12,BC bằng 15,cho phân giác góc C cắt AB tại N tính NB
Xét ΔBAC có CN là phân giác
nên NA/AC=NB/BC
=>NA/12=NB/15
=>NA/4=NB/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{NA}{4}=\dfrac{NB}{5}=\dfrac{NA+NB}{4+5}=\dfrac{9}{9}=1\)
Do đó: NB=5cm
Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC
Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC
Cho tam giác ABC vuông tại A có AB : AC = 8: 15 , BC= 51 cm . Tính chu vi và diện tích tam giác ABC
Vì \(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^0\Leftrightarrow BC^2=AB^2+AC^2\) ( ĐL Pytago )
Vì \(\frac{AB}{AC}=\frac{8}{15}\Leftrightarrow\frac{AB}{8}=\frac{AC}{15}\Leftrightarrow\frac{AB^2}{8^2}=\frac{AC^2}{15^2}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{AB^2}{8^2}=\frac{AC^2}{15^2}=\frac{AB^2+AC^2}{8^2+15^2}=\frac{BC^2}{64+225}=\frac{2061}{289}=9\)
\(\frac{AB^2}{8^2}=9\Leftrightarrow\sqrt{\frac{AB^2}{8^2}}=\sqrt{9}\Leftrightarrow\frac{AB}{8}=3\Leftrightarrow AB=3.8=24\left(cm\right)\)
\(\frac{AC^2}{15^2}=9\Leftrightarrow\sqrt{\frac{AC^2}{15^2}}=\sqrt{9}\Leftrightarrow\frac{AC}{15}=3\Leftrightarrow AC=15.3=45\left(cm\right)\)
Chu vi \(\Delta ABC=24+45+51=120\left(cm\right)\)
Diện tích \(\Delta ABC=\frac{a\times h}{2}=\frac{24\times45}{2}=\frac{1080}{2}=540\left(cm\right)\)